Investigation of Phytochemical and Antidepressants Activity of Cinnamon Powder Extract
DOI:
https://doi.org/10.55544/jrasb.3.5.16Keywords:
Neurodegenerative, Cinnamon, Disease, Chemical ConstituentsAbstract
Neurodegenerative disease is the most common type of mobility issue, but unfortunately, there is now no medication that can alter the course of the disease. We don't know what causes this ailment. In mouse models of Parkinson's disease induced with 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine, the oral administration of cinnamon powder and sodium benzoate may prevent the death of dopaminergic cells, dysregulation of striatal neurotransmitters, and motor impairments. The mechanisms driving its function include controlling autophagy, antioxidant effects, Parkin, DJ-1, and glial cell line-derived neurotrophic factor activation, TLR/NF-κB pathway modulation, and excessive proinflammatory response prevention. Moreover, research carried out in both laboratory and living organism settings has shown that cinnamon extracts may impact the oligomerisation and aggregation of α-synuclein. This article's goal is to discuss recent findings about this phytochemical's potential as a novel treatment for Parkinson's disease (PD). We highlight additional areas of mechanism that require investigation and possible constraints that must be overcome before this phytochemical may be used in PD trials. Neurodegenerative disease is the most common type of mobility impairment, and unfortunately, there is now no medication that can alter this disease.
We don't know what causes this ailment. There has been a recent uptick in interest in medicinal plant use because of the novelty, safety, and relative affordability of this field. The characteristic flavour and aroma of cinnamon, a spice that is often used, may have neuroprotective effects on people with Parkinson's disease (PD) and other neurodegenerative diseases. The essential oils of Cinnamomum species, such as cinnamaldehyde and sodium benzoate, have shown in vitro that they can protect cells from oxidative stress, ROS generation, and autophagy dysregulation. Consequently, these oils may exert a neuroprotective effect. The in vivo evidence suggests that cinnamon powder and sodium benzoate, when administered orally to Parkinson's disease models in mice, may prevent the death of dopaminergic cells, dysregulation of striatal neurotransmitters, and motor deficits. In this essay, we will go over the latest research on this phytochemical and its potential as a novel treatment for Parkinson's disease (PD). Incorporating this phytochemical into experimental PD treatments requires further investigation into additional molecular aspects and the potential overcoming of constraints and obstacles.
Downloads
Metrics
References
Jellinger KA. Basic mechanisms of neurodegeneration: a critical update. J Cell Mol Med 2010;14:457-87.
Nieoullon A. Neurodegenerative diseases and neuroprotection: current views and prospects. J Appl Biomed 2011;9:173-83.
Cacciatore I, Baldassarre L, Fornasari E, Mollica A, Pinnen F. Recent Advances in the Treatment of Neurodegenerative Diseases Based on GSH Delivery Systems. Oxid Med Cell Longev 2012;2012:1-12.
Kumar A, Singh A, Ekavali. A review on Alzheimer’s disease pathophysiology and its management: An update. Pharmacol Rep 2015;67:195-203.
Craig LA, Hong NS, McDonald RJ. Revisiting the cholinergic hypothesis in the development of Alzheimer’s disease. Neurosci Biobehav Rev 2011;35:1397-409.
Francis PT. The interplay of neurotransmitters in Alzheimer’s disease. CNS Spectr 2005;10:6-9.
Barbagallo M, Dominguez LJ. Type 2 diabetes mellitus and Alzheimer’s disease. World J Diabetes 2014;5:889-93.
Wood-Kaczmar A, Gandhi S, Wood NW. Understanding the molecular causes of Parkinson’s disease. Trends Mol Med 2006;12:521-8.
Wakabayashi K, Tanji K, Mori F, Takahashi H. The Lewy body in Parkinson’s disease: Molecules implicated in the formation and degradation of a-synuclein aggregates. Neuropathology 2007;27:494-506.
Dodson MW, Guo M. Pink1, Parkin, DJ-1 and mitochondrial dysfunction in Parkinson’s disease. Curr Opin Neurobiol 2007;17:331-7.
Warby SC, Montpetit A, Hayden AR, Carroll JB, Butland SL, Visscher H,et al. CAG Expansion in the Huntington disease gene is associated with a specific and targetable predisposing haplogroup. Am J Hum Genet 2009;84:351-66.
Craufurd D, Snowden J. Neuropsychological and neuropsychiatric aspects of Huntington’s disease. In: Bates GP, Harper PS, Jones L, editors. Huntington’s disease. UK: Oxford University Press; 2002. p. 63-94.
Novak MJ, Tabrizi SJ. Huntington’s disease. BMJ 2010;341:34-40.
Shook SJ, Pioro EP. Racing against the clock: recognizing, differentiating, diagnosing, and referring the amyotrophic lateral sclerosis patient. Ann Neurol 2009;65:10-6.
Neary D, Snowden J, Mann D. Frontotemopral dementia. Lancet Neurol 2005;4:771-80.
Snowden JS, Neary D, Mann DMA. Frontotemporal dementia. Br J Psychiatry 2002;180:140-3.
Lleo A, Greenberg SM, Growdon JH. Current Pharmacotherapy for Alzheimer’s disease. Annu Rev Med 2006;57:513-33.
Chen JJ, Swope DM. Pharmacotherapy for Parkinson’s Disease. Pharmacotherapy 2007;27:161S-73S.
Bastianetto S, Ramassamy C, Dore S, Christen Y, Poirier J, Quirion R. The Ginkgo biloba extract (EGb 761) protects hippocampal neurons against cell death induced by β-amyloid. Eur J Neurosci 2000;12:1882-90.
Lebeau A, Esclaire F, Rostene W, Pelaprat D. Baicalein protects cortical neurons from β-amyloid (25-35) induced toxicity. Neuroreport 2001;12:2199-202.
Lim GP, Chu T, Yang F, Beech W, Frautschy SA, Cole GM. The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J Neurosci 2001;21:8370-7.
Ono K, Hasegawa K, Naiki H, Yamada M. Curcumin has potent anti-amyloidogenic effects for Alzheimer’s beta-amyloid fibrils in vitro. J Neurosci Res 2004;75:742-50.
Zhu M, Rajamani S, Kaylor J, Han S, Zhou F, Fink AL. The flavonoid baicalein inhibits fibrillation of α-synuclein and disaggregates existing fibrils. J Biol Chem 2004;279:26846-57.
Joo SS, Lee DI. Potential effects of microglial activation induced by ginsenoside Rg3 in rat primary culture: enhancement of type a macrophage scavenger receptor expression. Arch Pharm Res 2005;28:1164-9.
Chen F, Eckman EA, Eckman CB. Reductions in levels of the Alzheimer's amyloid β peptide after oral administration of ginsenosides. FASEB J 2006;20:1269-71.
Mazza M, Capuano A, Bria P, Mazza S. Ginkgo biloba and donepezil: a comparison in the treatment of Alzheimer's dementia in a randomized placebo-controlled double-blind study. Eur J Neurol 2006;13:981-5.
Aggarwal BB, Harikumar KB, Dey S. Prevention and Treatment of neurodegeneration by spice-derived phytoconstituents. In: Packer L, Sies H, Eggersdorfer M, Cadenas E, editors. Micronutrients and Brain Health. Florida: CRC Press; 2004. p. 281-308.
Srinivasan K. Traditional Indian Functional Foods. In: Shi J, Ho C, Shahidi F, editors. Functional foods of the East. Florida: CRC Press; 2010. p. 51-84.
Ho SC, Chang KS, Chang PW. Inhibition of neuroinflammation by cinnamon and its main components. Food Chem 2013;138:2275-82.
Jain S, Sangma T, Shukla SK, Mediratta PK. Effect of Cinnamomum zeylanicum extract on scopolamine-induced cognitive impairment and oxidative stress in rats. Nutr Neurosci 2015;18:210-6.
Barceloux DG. Cinnamon (Cinnamomum Species). Dis Mon 2009;55:327-35.
Ranasinghe P, Jayawardana R, Galappaththy P, Constantine GR, de Vas Gunawardana N, Katulanda P. Efficacy and safety of 'true' cinnamon (Cinnamomum zeylanicum) as a pharmaceutical agent in diabetes: a systematic review and meta-analysis. Diabet Med 2012;29:1480-92.
Thankamani C, Sivaraman K, Kandiannan K, Peter K. Agronomy of tree spices (clove, nutmeg, cinnamon and allspice)-A review. JOSAC 1994;3:105-23.
Rao PV, Gan SH. Cinnamon: A Multifaceted Medicinal Plant. Evid Based Complement Alternat Med 2014;2014:1-12.
Wong YC, Ahmad-Mudzaqqirand MY, Wan-Nurdiyana WA. Extraction of Essential Oil from Cinnamon (Cinnamomum zeylanicum). Orient J Chem 2014;30:37-47.
Hamidpour R, Hamidpour M, Hamidpour S, Shahlari M. Cinnamon from the selection of traditional applications to its novel effects on the inhibition of angiogenesis in cancer cells and prevention of Alzheimer's disease, and a series of functions such as antioxidant, anticholesterol, antidiabetes, antibacterial, antifungal, nematicidal, acaracidal, and repellent activities. J Tradit Complement Med S2015;16:66-70.
Senanayake UM, Wijesekera ROB. Chemistry of Cinnamon and Cassia. In: Ravindran P, Nirmal Babu K, Shylaja M. Cinnamon and Cassia-The Genus Cinnamomum. Boca Raton, USA: CRC Press; 2004. p. 80.
Gruenwald J, Freder J, Armbruester N. Cinnamon and Health. Crit Rev Food Sci Nutr 2010;50:822-34.
Prasad KN, Yang B, Dong X, Jiang G, Zhang H, Xie H, et al. Flavonoid contents and antioxidant activities from Cinnamomum species. IFSET 2009;10:627-32.
Nabavi SF, Di Lorenzo A, Izadi M, Sobarzo-Sanchez E, Daglia M, Nabavi SM. Antibacterial Effects of Cinnamon: From Farm to Food, Cosmetic and Pharmaceutical Industries. Nutrients 2015;7:7729-48.
Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH. Mechanisms underlying inflammation in neurodegeneration. Cell 2010;140:918-34.
Brahmachari S, Jana A, Pahan K. Sodium Benzoate, a Metabolite of Cinnamon and a Food Additive, Reduces Microglial and Astroglial Inflammatory Responses. J Immunol 2009;183:5917-27.
Hwang H, Jeon H, Ock J, Hong SH, Han YM, Kwon BM, et al. Hydroxycinnamaldehyde targets low-density lipoprotein receptor-related protein-1 to inhibit lipopolysaccharide-induced microglial activation. J Neuroimmunol 2011;230:52-64.
Pyo JH, Jeong YK, Yeo S, Lee JH, Jeong MY, Kim SH, et al. Neuroprotective Effect of trans-Cinnamaldehyde on the 6-Hydroxydopamine-Induced Dopaminergic Injury. Biol Pharm Bull 2013;36:1928-35.
Anderson JK. Oxidative stress in neurodegeneration: cause or consequence? Nat Med 2004;5:S18-S25.
Hsu FL, Li WH, Yu CW, Hseih YC, Yang YF, Liu JT, et al. In Vivo Antioxidant Activities of Essential Oils and Their Constituents from Leaves of the Taiwanese Cinnamomum osmophloeum. J Agric Food Chem 2012;60:3092-7.
Kumar S, Vasudeva N, Sharma S. GC-MS analysis and screening of antidiabetic, antioxidant and hypolipidemic potential of Cinnamomum tamala oil in streptozotocin induced diabetes mellitus in rats. Cardiovasc Diabetol 2012;11:1-11.
Pandey AK, Mishra AK, Mishra A. Antifungal and antioxidative potential of oil and extracts derived from leaves of Indian spice plant Cinnamomum tamala. Cell Mol Biol 2012;58:142-7.
Yang CH, Li RX, Chuang LY. Antioxidant activity of various parts of Cinnamomum cassia extracted with different extraction methods. Molecules 2012;17:7294-304.
Abdelwahab SI, Mariod AA, Taha MME, Zaman FQ, Abdelmageed AHA, Khamis S, et al. Chemical composition and antioxidant properties of the essential oil of Cinnamomum altissimum Kosterm. (Lauraceae). Arab J Chem 2017;10:131-5.
Broks P, Preston GC, Traub M, Poppleton P, Ward C, Stahl SM. Modelling dementia: effects of scopolamine on memory and attention. Neuropsychologia 1988;26:685-700.
Mattson MP, Duan W, Pedersen WA, Culmsee C. Neurodegenerative disorders and ischemic brain diseases. Apoptosis 2001;6:69-81.
Lee EJ, Chen HY, Lee MY, Chen TY, Hsu YS, Hu YL, et al. Cinnamophilin reduces oxidative damage and protects against transient focal cerebral ischemia in mice. Free Radic Biol Med 2005;39:495-510.
Lee EJ, Chen HY, Hung YC, Chen TY, Lee MY, Yu SC, et al. Therapeutic window for cinnamophilin following oxygen–glucose deprivation and transient focal cerebral ischemia. Exp Neurol 2009;217:74-83.
Panickar KS, Polansky MM, Anderson RA. Cinnamon polyphenols attenuate cell swelling and mitochondrial dysfunction following oxygen-glucose deprivation in glial cells. Exp Neurol 2009;216:420-7.
Panickar KS, Polansky MM, Graves DJ, Urban JF Jr, Anderson RA. A procyanidin type A trimer from cinnamon extract attenuates glial cell swelling and the reduction in glutamate uptake follwing ischemia-like injury in vitro. Neuroscience 2012;202:87-98.
Li TJ, Qiu Y, Mao JQ, Yang PY, Rui YC, Chen WS. Protective Effects of Guizhi-Fuling-Capsules on Rat Brain Ischemia/Reperfusion Injury. J Pharmacol Sci 2007;105:34-40.
Jung HW, Mahesh R, Bae SH, Kim YH, Kang JS, Park YK. The antioxidant effects of Joongpoongtang 05 on brain injury after transient focalcerebral ischemia in rats. J Nat Med 2011;65:322-9.
Phillips HS, Hains JM, Armanini M, Laramee GR, Johnson SA, Winslow JW. BDNF mRNA is decreased in the hippocampus of individuals with Alzheimer's disease. Neuron 1991;7:695-702.
Arenas E, Persson H. Neurotrophin-3 prevents the death of adult central noradrenergic neurons in vivo. Nature 1994;367:368-71.
Mamounas LA, Blue ME, Siuciak JA, Altar CA. Brain-derived neurotrophic factor promotes the survival and sprouting of serotonergic axons in rat brain. J Neurosci 1995;15:7929-39.
Jana A, Modi KK, Roy A, Anderson JA, van Breemen RB, Pahan K. Up-regulation of neurotrophic factors by cinnamon and its metabolite sodium benzoate: Therapeutic implications for neurodegenerative disorders. J Neuroimmune Pharmacol 2013;8:739-55.
Lista S, Dubois B, Hampel H. Paths to Alzheimer’s disease prevention: from modifiable risk factors to biomarker enrichment strategies. J Nutr Health Aging 2015;19:154-63.
Francis P, Palmer A, Snape M, Wilcock G. The cholinergic hypothesis of Alzheimer’s disease: a review of progress. J Neurol Neurosurg Psychiatry 1999;66:137-47.
Boga M, Hacibekiroglu I, Kolak U. Antioxidant and anticholinesterase activities of eleven edible plants. Pharm Biol 2011;49:290-5.
Kumar S, Brijeshlata, Dixit S. Screening of traditional Indian spices for inhibitory activity of acetylcholinesterase and butyrylcholinesterase enzymes. Int J Pharm Biol Sci 2012;3:59-65.
Dalai MK, Bhadra S, Chaudhary SK, Chanda J, Bandyopadhyay A, Mukherjee P. Anticholinesterase activity of Cinnamomum zeylanicum L. leaf extract. TANG (Humanitas Medicine, HTM) 2014;4:21-6.
Dalai MK, Bhadra S, Chaudhary SK, Mukherjee P. Anti-cholinesterase potential of Cinnamomum tamala (Buch.-Ham.) T. Nees & Eberm. Leaves. Indian J Tradit Know 2014;13:691-7.
Malik J, Munjal K, Deshmukh R. Attenuating effect of standardized lyophilized Cinnamomum zeylanicum bark extract against streptozotocin-induced experimental dementia of Alzheimer’s type. J Basic Clin Physiol Pharmacol 2014;26:275-85.
Hardy J, Selkoe DJ. The Amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to Therapeutics. Science 2002;297:353-6.
Kim DSHL, Kim JY, Han YS. Alzheimer’s Disease Drug Discovery from Herbs: Neuroprotectivity from -Amyloid (1-42) Insult. J Altern Complement Med 2007;13:333-40.
Frydman-Marom A, Levin A, Farfara D, Benromano T, Scherzer-Attali R, Peled S, et al. Orally Administrated Cinnamon Extract Reduces β-Amyloid Oligomerization and Corrects Cognitive Impairment in Alzheimer's disease Animal Models. PLoS One 2011;6:1-11.
Ramshini H, Ebrahim-Habibi A, Aryanejad S, Rad A. Effect of Cinnamomum verum Extract on the Amyloid Formation of Hen Egg-white Lysozyme and Study of its Possible Role in Alzheimer’s Disease. Basic Clin Neurosci 2015;6:29-37.
Ramshini H, Ayoubi F. Inhibitory Effect of Cinnamomum zeylanicum and Camellia sinensis Extracts on the Hen Egg-White Lysozyme Fibrillation. J Kerman Univ Med Sci 2014;21:290-310.
Bulic B, Pickhardt M, Schmidt B, Mandelkow EM, Waldmann H, Mandelkow E. Development of Tau Aggregation Inhibitors for Alzheimer’s Disease. Angew Chem Int Ed Engl 2009;48:1740-52.
Tolnay M, Probost A. The Neuropathological Spectrum of Neurodegenerative Tauopathies. IUBMB Life 2003;55:299-305.
Peterson DW, George RC, Scaramozzino F, LaPointe NE, Anderson RA, Graves DJ, et al. Cinnamon Extract Inhibits Tau Aggregation Associated with Alzheimer’s disease in vitro. J Alzheimers Dis 2009;17:585-97.
Hunt JB, Nash KR, Placides D, Moran P, Selenica MB, Abuqalbeen F, et al. Sustained arginase 1 expression modulates pathological Tau deposits in a mouse model of Tauopathy. J Neurosci 2015;35:14842-60.
Goswami SK, Inamdar MN, Jamwal R, Dethe S. Effect of Cinnamomum cassia methanol extract and Sildenafil on arginase and sexual function of young male Wistar rats. J Sex Med 2014;11:1475-83.
de la Monte SM, Wands JR. Alzheimer’s disease Is Type 3 Diabetes-Evidence Reviewed. J Diabetes Sci Technol 2008;6:1101-13.
Anderson RA, Qin B, Canini F, Poulet L, Roussel AM. Cinnamon Counteracts the Negative Effects of a High Fat/High Fructose Diet on Behaviour, Brain Insulin Signalling and Alzheimer-Associated Changes. PLoS One 2013;8(12):e83243.
Bergman H, Deuschl G. Pathophysiology of Parkinson’s disease: from Clinical Neurology to Basic Neuroscience and Back. Mov Disord 2002;17:S28-S40.
Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M. Alpha synuclein in Lewy bodies. Nature 1997;388:839-40.
Breydo L, Wu JW, Uversky VN. α-Synuclein misfolding and Parkinson's disease. Biochim Biophys Acta 2012;1822:261-85.
Shaltiel-Karyo R, Davidi D, Frenkel-Pinter M, Ovadia M, Segal D, Gazit E. Differential inhibition of α-synuclein oligomeric and fibrillar assembly in Parkinson's disease model by cinnamon extract. Biochim Biophys Acta 2012;1820:1628-35.
Bonifati V, Rizzu P, van Baren MJ, Schaap O, Breedveld GJ, Krieger E, et al. Mutations in the DJ-1 Gene Associated with Autosomal Recessive Early-Onset Parkinsonism. Science 2003;299:256-9.
Choi J, Sullards MC, Olzmann JA, Rees HD, Weintraub ST, Bostwick DE, et al. Oxidative damage of DJ-1 is linked to sporadic Parkinson and Alzheimer diseases. J Biol Chem 2006;281:10816-24.
Ariga H, Takahashi-Niki K, Kato I, Maita H, Niki T, Iguchi-Ariga SMM. Neuroprotective Function of DJ-1 in Parkinson’s disease. Oxid Med Cell Longev 2013;2013:1-8.
Dawson TM, Dawson VL. The Role of Parkin in Familial and Sporadic Parkinson’s disease. Mov Disord 2010;25:S32-S39.
Khasnavis S, Pahan K. Sodium benzoate, a metabolite of cinnamon and a food additive, upregulates neuroprotective Parkinson disease protein DJ-1 in astrocytes and neurons. J Neuroimmune Pharmacol 2012;7:424-35.
Khasnavis S, Pahan K. Cinnamon Treatment Upregulates Neuroprotective Proteins Parkin and DJ-1 and Protects Dopaminergic Neurons in a Mouse Model of Parkinson’s disease. J Neuroimmune Pharmacol 2014;9:569-81.
Hornykiewicz O, Kish SJ. Biochemical pathophysiology of Parkinson’s disease. Adv Neurol 1987;45:19-34.
Olanow CW, Tatton WG. Etiology and pathogenesis of Parkinson's disease. Annu Rev Neurosci 1999;22:123-44.
Trapp BD, Nave KA. Multiple Sclerosis: An Immune or Neurodegenerative Disorder? Annu Rev Neurosci 2008;31:247-69.
Constantinescu CS, Farooqi N, O’Brien K, Gran B. Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). Br J Pharmacol 2011;164:1079-106.
Brahmachari S, Pahan K. Sodium benzoate, a food additive and a metabolite of cinnamon, modifies T cells at multiple steps and inhibits adoptive transfer of experimental allergic encephalomyelitis. J Immunol 2007;179:275-83.
Mondal S, Pahan K. Cinnamon ameliorates experimental allergic encephalomyelitis in mice via regulatory T Cells: implications for multiple sclerosis therapy. PLoS One 2015;10:1-26.
Moncke-Buchner E, Reich S, Mucke M, Reuter M, Messer W, Wanker EE, et al. Counting CAG repeats in Huntington’s disease gene by restriction endonuclease EcoP15I cleavage. Nucleic Acids Res 2002;30:1-7.
Patassini S, Begley P, Reid SJ, Xu J, Church SJ, Curtis M, et al. Identification of elevated urea as a severe, ubiquitous metabolic defect in the brain of patients with Huntington's disease. Biochem Biophys Res Commun 2015;468:161-6.
Morris SM Jr. Enzymes of arginine metabolism. J Nutr 2004;134:2743S-7S
Abd El-Mawla AM, Schmidt W, Beerhues L. Cinnamic acid is a precursor of benzoic acids in cell cultures of Hypericum androsaemum L. but not in cell cultures of Centaurium erythraea RAFN. Planta. 2001;212:288–293. doi: 10.1007/s004250000394.
Akama KT, Albanese C, Pestell RG, Van Eldik LJ. Amyloid beta-peptide stimulates nitric oxide production in astrocytes through an NFkappaB-dependent mechanism. Proc Natl Acad Sci U S A. 1998;95:5795–5800. doi: 10.1073/pnas.95.10.5795.
Benner EJ, Mosley RL, Destache CJ, Lewis TB, Jackson-Lewis V, Gorantla S, Nemachek C, Green SR, Przedborski S, Gendelman HE. Therapeutic immunization protects dopaminergic neurons in a mouse model of Parkinson’s disease. Proc Natl Acad Sci U S A. 2004;101:9435–9440. doi: 10.1073/pnas.0400569101.
Bian M, Liu J, Hong X, Yu M, Huang Y, Sheng Z, Fei J, Huang F. Overexpression of parkin ameliorates dopaminergic neurodegeneration induced by 1- methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mice. PLoS ONE. 2013;7:e39953. doi: 10.1371/journal.pone.0039953.
Brahmachari S, Pahan K. Sodium benzoate, a food additive and a metabolite of cinnamon, modifies T cells at multiple steps and inhibits adoptive transfer of experimental allergic encephalomyelitis. J Immunol. 2007;179:275–283. doi: 10.4049/jimmunol.179.1.275.
Brahmachari S, Fung YK, Pahan K. Induction of glial fibrillary acidic protein expression in astrocytes by nitric oxide. J Neurosci. 2006;26:4930–4939. doi: 10.1523/JNEUROSCI.5480-05.2006.
Brahmachari S, Jana A, Pahan K. Sodium benzoate, a metabolite of cinnamon and a food additive, reduces microglial and astroglial inflammatory responses. J Immunol. 2009;183:5917–5927. doi: 10.4049/jimmunol.0803336.
Bridges JW, French MR, Smith RL, Williams RT. The fate of benzoic acid in various species. Biochem J. 1970;118:47–51. doi: 10.1042/bj1180047. [
Brosnan CF, Battistini L, Raine CS, Dickson DW, Casadevall A, Lee SC. Reactive nitrogen intermediates in human neuropathology: an overview. Dev Neurosci. 1994;16:152–161. doi: 10.1159/000112102.
Dauer W, Przedborski S. Parkinson’s disease: mechanisms and models. Neuron. 2003;39:889–909. doi: 10.1016/s0896-6273(03)00568-3.
Drapier JC, Hibbs JB., Jr Differentiation of murine macrophages to express nonspecific cytotoxicity for tumor cells results in L-arginine-dependent inhibition of mitochondrial iron-sulfur enzymes in the macrophage effector cells. J Immunol. 1988;140:2829–2838.
Fahn S. Parkinson’s disease: 10 years of progress, 1997–2007. Mov Disord. 2010;25(Suppl 1):S2–S14. doi: 10.1002/mds.22796.
Ghosh A, Roy A, Liu X, Kordower JH, Mufson EJ, Hartley DM, Ghosh S, Mosley RL, Gendelman HE, Pahan K. Selective inhibition of NF-kappaB activation prevents dopaminergic neuronal loss in a mouse model of Parkinson’s disease. Proc Natl Acad Sci U S A. 2007;104:18754–18759. doi: 10.1073/pnas.0704908104.
Ghosh A, Roy A, Matras J, Brahmachari S, Gendelman HE, Pahan K. Simvastatin inhibits the activation of p21ras and prevents the loss of dopaminergic neurons in a mouse model of Parkinson’s disease. J Neurosci. 2009;29:13543–13556. doi: 10.1523/JNEUROSCI.4144-09.2009.
Jana M, Anderson JA, Saha RN, Liu X, Pahan K. Regulation of inducible nitric oxide synthase in proinflammatory cytokine-stimulated human primary astrocytes. Free Radic Biol Med. 2005;38:655–664. doi: 10.1016/j.freeradbiomed.2004.11.021.
Jana M, Jana A, Liu X, Ghosh S, Pahan K. Involvement of phosphatidylinositol 3-kinase-mediated up-regulation of I kappa B alpha in anti-inflammatory effect of gemfibrozil in microglia. J Immunol. 2007;179:4142–4152. doi: 10.4049/jimmunol.179.6.4142.
Jana A, Modi KK, Roy A, Anderson JA, van Breemen RB, Pahan K. Up-regulation of neurotrophic factors by cinnamon and its metabolite sodium benzoate: therapeutic implications for neurodegenerative disorders. J Neuroimmune Pharmacol. 2013;8:739–755. doi: 10.1007/s11481-013-9447-7.
Khasnavis S, Pahan K. Sodium benzoate, a metabolite of cinnamon and a food additive, upregulates neuroprotective Parkinson disease protein DJ-1 in astrocytes and neurons. J Neuroimmune Pharmacol. 2012;7:424–435. doi: 10.1007/s11481-011-9286-3.
Khasnavis S, Jana A, Roy A, Mazumder M, Bhushan B, Wood T, Ghosh S, Watson R, Pahan K. Suppression of nuclear factor-kappaB activation and inflammation in microglia by physically modified saline. J Biol Chem. 2012;287:29529–29542. doi: 10.1074/jbc.M111.338012.
Khasnavis S, Roy A, Ghosh S, Watson R, Pahan K. Protection of dopaminergic neurons in a mouse model of parkinson’s disease by a physically-modified saline containing charge-stabilized nanobubbles. J Neuroimmune Pharmacol. 2014 doi: 10.1007/s11481-013-9503-3.
Kubota K, Ishizaki T. Dose-dependent pharmacokinetics of benzoic acid following oral administration of sodium benzoate to humans. Eur J Clin Pharmacol. 1991;41:363–368. doi: 10.1007/BF00314969.
Leonard JV, Morris AA. Urea cycle disorders. Semin Neonatol. 2002;7:27–35. doi: 10.1053/siny.2001.0085.
Merrill JE, Ignarro LJ, Sherman MP, Melinek J, Lane TE. Microglial cell cytotoxicity of oligodendrocytes is mediated through nitric oxide. J Immunol. 1993;151:2132–2141.
Mondal S, Martinson JA, Ghosh S, Watson R, Pahan K. Protection of Tregs, suppression of Th1 and Th17 cells, and amelioration of experimental allergic encephalomyelitis by a physically-modified saline. PLoS ONE. 2012a;7:e51869. doi: 10.1371/journal.pone.0051869.
Mondal S, Roy A, Jana A, Ghosh S, Kordower JH, Pahan K. Testing NF-kappaB-based therapy in hemiparkinsonian monkeys. J Neuroimmune Pharmacol. 2012b;7:544–556. doi: 10.1007/s11481-012-9377-9.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Santosh Kumar S.R., Manoj Manjunath Bongale, Chandresh Maurya, Yuvraj, Vikas Lalji Gupta, Sneha Arunkumar Dubey, Prakash Pralhad Sarwade
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.