A Review on Green Synthesized Metal Nanoparticles Applications
DOI:
https://doi.org/10.55544/jrasb.3.5.11Keywords:
Metal nanoparticles, Green synthesis, nanotechnologyAbstract
Nanotechnology pertains to the manipulation of materials at exceedingly small scales, specifically between 1 and 100 nanometers. Materials at this scale exhibit significantly different properties compared to the same materials at larger scales. An emerging trend is the utilization of nanoparticles (NPs) to address environmental issues. Metallic nanoparticles are among the several nanoparticles that are extensively utilized in environmentally sustainable endeavors. A sustainable, economical, and enduring approach is to synthesize nanoparticles through a more ecologically friendly procedure instead of a physical or chemical method. Plant components primarily function as reducing and capping agents in eco-friendly synthesis. Diverse metallic nanoparticles of various sizes and shapes have been created utilizing extracts from plant materials, including leaves, bark, fruits, and flowers. The synthesis of Nobel laureate metal nanoparticles is essential to the medical sector. A diverse array of glycosides and phenolic compounds constitutes numerous organic constituents in plants, facilitating the synthesis of metal nanoparticles. The absence of detrimental by-products in metal nanoparticle synthesis is the primary significance of green synthesis. The nanoparticles generated by an eco-friendly approach demonstrate several significant biological activity. A substantial body of literature demonstrates that the synthesized nanoparticles are efficacious against both gram-positive and gram-negative bacteria, including E. coli, Bacillus subtilis, Klebsiella pneumoniae, and Pseudomonas fluorescens. The synthesized nanoparticles not only display antifungal efficacy against several cancer cell lines, including those of breast cancer, but also demonstrate antifungal activity against Trichophyton simii, Trichophyton mentagrophytes, and Trichophyton rubrum. Moreover, they exhibit potent antioxidant properties. The dimensions and morphology of these metal nanoparticles substantially influence their functionalities. Particles characterized by a large surface area and diminutive size provide significant potential for medical applications. This paper aims to provide a comprehensive summary of current advancements in the synthesis of nanoparticles utilizing biological entities and their numerous potential applications.
Downloads
Metrics
References
Bolade, O. P., Williams, A. B., & Benson, N. U. (2020). Green synthesis of iron-based nanomaterials for environmental remediation: A review. Environmental Nanotechnology, Monitoring & Management, 13, 100279.
Lim, N. R. E., Santos, G. N. C., Ubando, A. T., & Culaba, A. B. (2021, March). Nanotechnology in the Philippines: Development of framework for technology adoption. In IOP Conference Series: Materials Science and Engineering (Vol. 1109, No. 1, p. 012031). IOP Publishing.
Dikshit, P. K., Kumar, J., Das, A. K., Sadhu, S., Sharma, S., Singh, S., ... & Kim, B. S. (2021). Green synthesis of metallic nanoparticles: Applications and limitations. Catalysts, 11(8), 902.
Uddandarao, P., Balakrishnan, R. M., Ashok, A., Swarup, S., & Sinha, P. (2019). Bioinspired ZnS: Gd nanoparticles synthesized from an endophytic fungi Aspergillus flavus for fluorescence-based metal detection. Biomimetics, 4(1), 11.
Shedbalkar, U., Singh, R., Wadhwani, S., Gaidhani, S., & Chopade, B. A. (2014). Microbial synthesis of gold nanoparticles: current status and future prospects. Advances in colloid and interface science, 209, 40-48.
Akl, B. A., Nader, M. M., & El-Saadony, M. T. (2020). Biosynthesis of silver nanoparticles by Serratia marcescens ssp sakuensis and its antibacterial application against some pathogenic bacteria. Journal of Agricultural Chemistry and Biotechnology, 11(1), 1-8.
Arora, S., Jain, J., Rajwade, J. M., & Paknikar, K. M. (2008). Cellular responses induced by silver nanoparticles: in vitro studies. Toxicology letters, 179(2), 93-100.
Aziz, N., Faraz, M., Pandey, R., Shakir, M., Fatma, T., Varma, A., ... & Prasad, R. (2015). Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial, and photocatalytic properties. Langmuir, 31(42), 11605-11612.
Balraj, B., Senthilkumar, N., Siva, C., Krithikadevi, R., Julie, A., Potheher, I. V., & Arulmozhi, M. (2017). Synthesis and characterization of zinc oxide nanoparticles using marine Streptomyces sp. with its investigations on anticancer and antibacterial activity. Research on Chemical Intermediates, 43, 2367-2376.
Brown, A. N., Smith, K., Samuels, T. A., Lu, J., Obare, S. O., & Scott, M. E. (2012). Nanoparticles functionalized with ampicillin destroy multiple-antibiotic-resistant isolates of Pseudomonas aeruginosa and Enterobacter aerogenes and methicillin-resistant Staphylococcus aureus. Applied and environmental microbiology, 78(8), 2768-2774.
Castro, L., Blázquez, M. L., González, F., Muñoz, J. Á., & Ballester, A. (2015). Biosynthesis of silver and platinum nanoparticles using orange peel extract: characterisation and applications. IET nanobiotechnology, 9(5), 252-258.
Cheloni, G., Marti, E., & Slaveykova, V. I. (2016). Interactive effects of copper oxide nanoparticles and light to green alga Chlamydomonas reinhardtii. Aquatic Toxicology, 170, 120-128.
Cinelli, M., Coles, S. R., Nadagouda, M. N., Błaszczyński, J., Słowiński, R., Varma, R. S., & Kirwan, K. (2015). A green chemistry-based classification model for the synthesis of silver nanoparticles. Green Chemistry, 17(5), 2825-2839.
Cui, Y., Zhao, Y., Tian, Y., Zhang, W., Lü, X., & Jiang, X. (2012). The molecular mechanism of action of bactericidal gold nanoparticles on Escherichia coli. Biomaterials, 33(7), 2327-2333.
DeAlba-Montero, I., Guajardo-Pacheco, J., Morales-Sánchez, E., Araujo-Martínez, R., Loredo-Becerra, G. M., Martínez-Castañón, G. A., ... & Compeán Jasso, M. E. (2017). Antimicrobial properties of copper nanoparticles and amino acid chelated copper nanoparticles produced by using a soya extract. Bioinorganic chemistry and applications, 2017(1), 1064918.
Dhar, S. A., Chowdhury, R. A., Das, S., Nahian, M. K., Islam, D., & Gafur, M. A. (2021). Plant-mediated green synthesis and characterization of silver nanoparticles using Phyllanthus emblica fruit extract. Materials Today: Proceedings, 42, 1867-1871.
Dikshit, P. K., Kumar, J., Das, A. K., Sadhu, S., Sharma, S., Singh, S., ... & Kim, B. S. (2021). Green synthesis of metallic nanoparticles: Applications and limitations. Catalysts, 11(8), 902.
Gupta, K., & Chundawat, T. S. (2019). Bio-inspired synthesis of platinum nanoparticles from fungus Fusarium oxysporum: its characteristics, potential antimicrobial, antioxidant and photocatalytic activities. Materials Research Express, 6(10), 1050d6.
YokeshBabu, M., JanakiDevi, V., Ramakritinan, C. M., Umarani, R., Nagarani, N., & Kumaraguru, A. K. (2013). Biosynthesis of silver nanoparticles from seaweed associated marine bacterium and its antimicrobial activity against UTI pathogens. Int. J. Curr. Microbiol. Appl. Sci, 2(8), 155-168.
Aseyd Nezhad, S., Es‐haghi, A., & Tabrizi, M. H. (2020). Green synthesis of cerium oxide nanoparticle using Origanum majorana L. leaf extract, its characterization and biological activities. Applied Organometallic Chemistry, 34(2), e5314.
Yulizar, Y., Juliyanto, S., Apriandanu, D. O. B., & Surya, R. M. (2021). Novel sol-gel synthesis of CeO2 nanoparticles using Morinda citrifolia L. fruit extracts: structural and optical analysis. Journal of Molecular Structure, 1231, 129904.
El-Borady, O. M., Ayat, M. S., Shabrawy, M. A., & Millet, P. (2020). Green synthesis of gold nanoparticles using Parsley leaves extract and their applications as an alternative catalytic, antioxidant, anticancer, and antibacterial agents. Advanced Powder Technology, 31(10), 4390-4400.
Surendra, B. S., Mallikarjunaswamy, C., Pramila, S., & Rekha, N. D. (2021). Bio-mediated synthesis of ZnO nanoparticles using Lantana Camara flower extract: Its characterizations, photocatalytic, electrochemical and anti-inflammatory applications. Environmental Nanotechnology, Monitoring & Management, 15, 100442.
Rai, M., Yadav, A., & Gade, A. (2008). CRC 675—current trends in phytosynthesis of metal nanoparticles. Critical reviews in biotechnology, 28(4), 277-284.
Jeyaraj, M., Rajesh, M., Arun, R., MubarakAli, D., Sathishkumar, G., Sivanandhan, G., ... & Ganapathi, A. (2013). An investigation on the cytotoxicity and caspase-mediated apoptotic effect of biologically synthesized silver nanoparticles using Podophyllum hexandrum on human cervical carcinoma cells. Colloids and Surfaces B: Biointerfaces, 102, 708-717.
Durval, I. J. B., Meira, H. M., de Veras, B. O., Rufino, R. D., Converti, A., & Sarubbo, L. A. (2021). Green synthesis of silver nanoparticles using a biosurfactant from Bacillus cereus UCP 1615 as stabilizing agent and its application as an antifungal agent. Fermentation, 7(4), 233.
Gnanasekar, S., Murugaraj, J., Dhivyabharathi, B., Krishnamoorthy, V., Jha, P. K., Seetharaman, P., ... & Sivaperumal, S. (2018). Antibacterial and cytotoxicity effects of biogenic palladium nanoparticles synthesized using fruit extract of Couroupita guianensis Aubl. Journal of applied biomedicine, 16(1), 59-65.
Gopinath, P. M., Narchonai, G., Dhanasekaran, D., Ranjani, A., & Thajuddin, N. (2015). Mycosynthesis, characterization and antibacterial properties of AgNPs against multidrug resistant (MDR) bacterial pathogens of female infertility cases. asian journal of pharmaceutical sciences, 10(2), 138-145.
Hebbalalu, D., Lalley, J., Nadagouda, M. N., & Varma, R. S. (2013). Greener techniques for the synthesis of silver nanoparticles using plant extracts, enzymes, bacteria, biodegradable polymers, and microwaves. ACS Sustainable Chemistry & Engineering, 1(7), 703-712.
Iqtedar, M., Aslam, M., Akhyar, M., Shehzaad, A., Abdullah, R., & Kaleem, A. (2019). Extracellular biosynthesis, characterization, optimization of silver nanoparticles (AgNPs) using Bacillus mojavensis BTCB15 and its antimicrobial activity against multidrug resistant pathogens. Preparative Biochemistry and Biotechnology, 49(2), 136-142.
Nasrollahzadeh, M., Sajadi, S. M., & Maham, M. (2015). Green synthesis of palladium nanoparticles using Hippophae rhamnoides Linn leaf extract and their catalytic activity for the Suzuki–Miyaura coupling in water. Journal of Molecular Catalysis A: Chemical, 396, 297-303.
Khazaei, A., Rahmati, S., Hekmatian, Z., & Saeednia, S. (2013). A green approach for the synthesis of palladium nanoparticles supported on pectin: Application as a catalyst for solvent-free Mizoroki–Heck reaction. Journal of Molecular Catalysis A: Chemical, 372, 160-166.
Bankar, A., Joshi, B., Kumar, A. R., & Zinjarde, S. (2010). Banana peel extract mediated novel route for the synthesis of palladium nanoparticles. Materials Letters, 64(18), 1951-1953.
Yang, X., Li, Q., Wang, H., Huang, J., Lin, L., Wang, W., ... & Jia, L. (2010). Green synthesis of palladium nanoparticles using broth of Cinnamomum camphora leaf. Journal of Nanoparticle Research, 12, 1589-1598.
Kalaiselvi, A., Roopan, S. M., Madhumitha, G., Ramalingam, C., & Elango, G. (2015). Synthesis and characterization of palladium nanoparticles using Catharanthus roseus leaf extract and its application in the photo-catalytic degradation. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 135, 116-119.
Kumar, K. M., Mandal, B. K., Kumar, K. S., Reddy, P. S., & Sreedhar, B. (2013). Biobased green method to synthesise palladium and iron nanoparticles using Terminalia chebula aqueous extract. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 102, 128-133.
Rabiee, N., Bagherzadeh, M., Kiani, M., & Ghadiri, A. M. (2020). Rosmarinus officinalis directed palladium nanoparticle synthesis: investigation of potential anti-bacterial, anti-fungal and Mizoroki-Heck catalytic activities. Advanced Powder Technology, 31(4), 1402-1411.
Daisy, P., & Saipriya, K. (2012). Biochemical analysis of Cassia fistula aqueous extract and phytochemically synthesized gold nanoparticles as hypoglycemic treatment for diabetes mellitus. International journal of nanomedicine, 1189-1202.
Thangamani, N., & Bhuvaneshwari, N. J. C. P. L. (2019). Green synthesis of gold nanoparticles using Simarouba glauca leaf extract and their biological activity of micro-organism. Chemical Physics Letters, 732, 136587.
Satpathy, S., Patra, A., Ahirwar, B., & Hussain, M. D. (2020). Process optimization for green synthesis of gold nanoparticles mediated by extract of Hygrophila spinosa T. Anders and their biological applications. Physica E: Low-dimensional Systems and Nanostructures, 121, 113830.
Kumar, P. V., Kala, S. M. J., & Prakash, K. S. (2019). Green synthesis of gold nanoparticles using Croton Caudatus Geisel leaf extract and their biological studies. Materials Letters, 236, 19-22.
Anand, K., Gengan, R. M., Phulukdaree, A., & Chuturgoon, A. (2015). Agroforestry waste Moringa oleifera petals mediated green synthesis of gold nanoparticles and their anti-cancer and catalytic activity. Journal of Industrial and Engineering Chemistry, 21, 1105-1111.
Sathishkumar, M., Pavagadhi, S., Mahadevan, A., & Balasubramanian, R. (2015). Biosynthesis of gold nanoparticles and related cytotoxicity evaluation using A549 cells. Ecotoxicology and environmental safety, 114, 232-240.
Krishnaraj, C., Muthukumaran, P., Ramachandran, R., Balakumaran, M. D., & Kalaichelvan, P. T. (2014). Acalypha indica Linn: biogenic synthesis of silver and gold nanoparticles and their cytotoxic effects against MDA-MB-231, human breast cancer cells. Biotechnology Reports, 4, 42-49.
Dwivedi, A. D., & Gopal, K. (2010). Biosynthesis of silver and gold nanoparticles using Chenopodium album leaf extract. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 369(1-3), 27-33.
Philip, D. (2010). Green synthesis of gold and silver nanoparticles using Hibiscus rosa sinensis. Physica E: Low-Dimensional Systems and Nanostructures, 42(5), 1417-1424.
Baghizadeh, A., Ranjbar, S., Gupta, V. K., Asif, M., Pourseyedi, S., Karimi, M. J., & Mohammadinejad, R. (2015). Green synthesis of silver nanoparticles using seed extract of Calendula officinalis in liquid phase. Journal of molecular liquids, 207, 159-163.
Gurunathan, S., Han, J. W., Kwon, D. N., & Kim, J. H. (2014). Enhanced antibacterial and anti-biofilm activities of silver nanoparticles against Gram-negative and Gram-positive bacteria. Nanoscale research letters, 9, 1-17.
Sheny, D. S., Philip, D., & Mathew, J. (2013). Synthesis of platinum nanoparticles using dried Anacardium occidentale leaf and its catalytic and thermal applications. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 114, 267-271.
Zheng, B., Kong, T., Jing, X., Odoom-Wubah, T., Li, X., Sun, D., ... & Li, Q. (2013). Plant-mediated synthesis of platinum nanoparticles and its bioreductive mechanism. Journal of Colloid and Interface Science, 396, 138-145.
Raut, R. W., Haroon, A. S. M., Malghe, Y. S., Nikam, B. T., & Kashid, S. B. (2013). Rapid biosynthesis of platinum and palladium metal nanoparticles using root extract of Asparagus racemosus Linn. Adv Mater Lett, 4(8), 650-654.
Song, J. Y., Kwon, E. Y., & Kim, B. S. (2010). Biological synthesis of platinum nanoparticles using Diopyros kaki leaf extract. Bioprocess and biosystems engineering, 33, 159-164.
Razavi, R., Molaei, R., Moradi, M., Tajik, H., Ezati, P., & Shafipour Yordshahi, A. (2020). Biosynthesis of metallic nanoparticles using mulberry fruit (Morus alba L.) extract for the preparation of antimicrobial nanocellulose film. Applied Nanoscience, 10, 465-476.
Lotha, R., Shamprasad, B. R., Sundaramoorthy, N. S., Nagarajan, S., & Sivasubramanian, A. (2019). Biogenic phytochemicals (cassinopin and isoquercetin) capped copper nanoparticles (ISQ/CAS@ CuNPs) inhibits MRSA biofilms. Microbial pathogenesis, 132, 178-187.
Khani, R., Roostaei, B., Bagherzade, G., & Moudi, M. (2018). Green synthesis of copper nanoparticles by fruit extract of Ziziphus spina-christi (L.) Willd.: Application for adsorption of triphenylmethane dye and antibacterial assay. Journal of Molecular Liquids, 255, 541-549.
Liang, T., Qiu, X., Ye, X., Liu, Y., Li, Z., Tian, B., & Yan, D. (2020). Biosynthesis of selenium nanoparticles and their effect on changes in urinary nanocrystallites in calcium oxalate stone formation. 3 Biotech, 10, 1-6.
Yazhiniprabha, M., & Vaseeharan, B. (2019). In vitro and in vivo toxicity assessment of selenium nanoparticles with significant larvicidal and bacteriostatic properties. Materials Science and Engineering: C, 103, 109763.
Menon, S., KS, S. D., Agarwal, H., & Shanmugam, V. K. (2019). Efficacy of biogenic selenium nanoparticles from an extract of ginger towards evaluation on anti-microbial and anti-oxidant activities. Colloid and Interface Science Communications, 29, 1-8.
Lin, Z., Weng, X., Owens, G., & Chen, Z. (2020). Simultaneous removal of Pb (II) and rifampicin from wastewater by iron nanoparticles synthesized by a tea extract. Journal of Cleaner Production, 242, 118476.
Katata-Seru, L., Moremedi, T., Aremu, O. S., & Bahadur, I. (2018). Green synthesis of iron nanoparticles using Moringa oleifera extracts and their applications: Removal of nitrate from water and antibacterial activity against Escherichia coli. Journal of Molecular Liquids, 256, 296-304.
Radini, I. A., Hasan, N., Malik, M. A., & Khan, Z. (2018). Biosynthesis of iron nanoparticles using Trigonella foenum-graecum seed extract for photocatalytic methyl orange dye degradation and antibacterial applications. Journal of Photochemistry and Photobiology B: Biology, 183, 154-163.
Dhillon, G. S., Brar, S. K., Kaur, S., & Verma, M. (2012). Green approach for nanoparticle biosynthesis by fungi: current trends and applications. Critical reviews in biotechnology, 32(1), 49-73.
Spagnoletti, F. N., Spedalieri, C., Kronberg, F., & Giacometti, R. (2019). Extracellular biosynthesis of bactericidal Ag/AgCl nanoparticles for crop protection using the fungus Macrophomina phaseolina. Journal of environmental management, 231, 457-466.
Sastry, M., Ahmad, A., Khan, M. I., & Kumar, R. (2003). Biosynthesis of metal nanoparticles using fungi and actinomycete. Current science, 162-170.
Chan, S., & Don, M. (2012). Characterization of Ag nanoparticles produced by white-rot fungi and its in vitro antimicrobial activities. The International Arabic Journal of Antimicrobial Agents, 2(3: 3), 1-8.
Hulkoti, N. I., & Taranath, T. C. (2014). Biosynthesis of nanoparticles using microbes—a review. Colloids and surfaces B: Biointerfaces, 121, 474-483.
Fernández, J. G., Fernández-Baldo, M. A., Berni, E., Camí, G., Durán, N., Raba, J., & Sanz, M. I. (2016). Production of silver nanoparticles using yeasts and evaluation of their antifungal activity against phytopathogenic fungi. Process Biochemistry, 51(9), 1306-1313.
Gupta, A., Bonde, S. R., Gaikwad, S., Ingle, A., Gade, A. K., & Rai, M. (2014). Lawsonia inermis‐mediated synthesis of silver nanoparticles: activity against human pathogenic fungi and bacteria with special reference to formulation of an antimicrobial nanogel. IET nanobiotechnology, 8(3), 172-178.
El Sayed, M. T., & El-Sayed, A. S. (2020). Biocidal activity of metal nanoparticles synthesized by Fusarium solani against multidrug-resistant bacteria and mycotoxigenic fungi. Journal of Microbiology and Biotechnology, 30(2), 226.
Zhang, X., Qu, Y., Shen, W., Wang, J., Li, H., Zhang, Z., ... & Zhou, J. (2016). Biogenic synthesis of gold nanoparticles by yeast Magnusiomyces ingens LH-F1 for catalytic reduction of nitrophenols. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 497, 280-285.
Seshadri, S., Saranya, K., & Kowshik, M. (2011). Green synthesis of lead sulfide nanoparticles by the lead resistant marine yeast, Rhodosporidium diobovatum. Biotechnology progress, 27(5).
Salunke, B. K., Sawant, S. S., Lee, S. I., & Kim, B. S. (2015). Comparative study of MnO 2 nanoparticle synthesis by marine bacterium Saccharophagus degradans and yeast Saccharomyces cerevisiae. Applied microbiology and biotechnology, 99, 5419-5427.
Mourato, A., Gadanho, M., Lino, A. R., & Tenreiro, R. (2011). Biosynthesis of crystalline silver and gold nanoparticles by extremophilic yeasts. Bioinorganic chemistry and applications, 2011(1), 546074.
Kowshik, M., Ashtaputre, S., Kharrazi, S., Vogel, W., Urban, J., Kulkarni, S. K., & Paknikar, K. M. (2002). Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnology, 14(1), 95.
Breierová, E., Vajcziková, I., Sasinková, V., Stratilová, E., Fišera, M., Gregor, T., & Šajbidor, J. (2002). Biosorption of cadmium ions by different yeast species. Zeitschrift für Naturforschung C, 57(7-8), 634-639.
Brayner, R., Coradin, T., Beaunier, P., Grenèche, J. M., Djediat, C., Yéprémian, C., ... & Fiévet, F. (2012). Intracellular biosynthesis of superparamagnetic 2-lines ferri-hydrite nanoparticles using Euglena gracilis microalgae. Colloids and Surfaces B: Biointerfaces, 93, 20-23.
Dahoumane, S. A., Yéprémian, C., Djédiat, C., Couté, A., Fiévet, F., Coradin, T., & Brayner, R. (2014). A global approach of the mechanism involved in the biosynthesis of gold colloids using micro-algae. Journal of nanoparticle research, 16, 1-12.
Priyadharshini, R. I., Prasannaraj, G., Geetha, N., & Venkatachalam, P. (2014). Microwave-mediated extracellular synthesis of metallic silver and zinc oxide nanoparticles using macro-algae (Gracilaria edulis) extracts and its anticancer activity against human PC3 cell lines. Applied biochemistry and biotechnology, 174, 2777-2790.
Naveena, B. E., & Prakash, S. (2013). Biological synthesis of gold nanoparticles using marine algae Gracilaria corticata and its application as a potent antimicrobial and antioxidant agent. Asian J Pharm Clin Res, 6(2), 179-182.
Bhattacharya, P., Swarnakar, S., Ghosh, S., Majumdar, S., & Banerjee, S. (2019). Disinfection of drinking water via algae mediated green synthesized copper oxide nanoparticles and its toxicity evaluation. Journal of Environmental Chemical Engineering, 7(1), 102867.
Kathiraven, T., Sundaramanickam, A., Shanmugam, N., & Balasubramanian, T. (2015). Green synthesis of silver nanoparticles using marine algae Caulerpa racemosa and their antibacterial activity against some human pathogens. Applied Nanoscience, 5, 499-504.
Vigneshwaran, N., Ashtaputre, N. M., Varadarajan, P. V., Nachane, R. P., Paralikar, K. M., & Balasubramanya, R. H. (2007). Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Materials letters, 61(6), 1413-1418.
He, S., Guo, Z., Zhang, Y., Zhang, S., Wang, J., & Gu, N. (2007). Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata. Materials Letters, 61(18), 3984-3987.
Durán, N., Marcato, P. D., Alves, O. L., De Souza, G. I., & Esposito, E. (2005). Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. Journal of nanobiotechnology, 3, 1-7.
Chaudhari, S. P., Damahe, A., & Kumbhar, P. (2016). Silver nanoparticles-A review with focus on green synthesis. International Journal of Pharma Research & Review, 5, 14-28.
Ingle, A., Rai, M., Gade, A., & Bawaskar, M. (2009). Fusarium solani: a novel biological agent for the extracellular synthesis of silver nanoparticles. Journal of Nanoparticle Research, 11, 2079-2085.
Naqvi, S. Z. H., Kiran, U., Ali, M. I., Jamal, A., Hameed, A., Ahmed, S., & Ali, N. (2013). Combined efficacy of biologically synthesized silver nanoparticles and different antibiotics against multidrug-resistant bacteria. International journal of nanomedicine, 3187-3195.
Philip, D. (2009). Biosynthesis of Au, Ag and Au–Ag nanoparticles using edible mushroom extract. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 73(2), 374-381.
Gade, A. K., Bonde, P., Ingle, A. P., Marcato, P. D., Duran, N., & Rai, M. K. (2008). Exploitation of Aspergillus niger for synthesis of silver nanoparticles. Journal of Biobased Materials and Bioenergy, 2(3), 243-247.
Mukherjee, P., Ahmad, A., Mandal, D., Senapati, S., Sainkar, S. R., Khan, M. I., ... & Sastry, M. (2001). Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano letters, 1(10), 515-519.
Shankar, S. S., Ahmad, A., Pasricha, R., & Sastry, M. (2003). Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. Journal of Materials Chemistry, 13(7), 1822-1826.
Parikh, R. Y., Singh, S., Prasad, B. L. V., Patole, M. S., Sastry, M., & Shouche, Y. S. (2008). Extracellular synthesis of crystalline silver nanoparticles and molecular evidence of silver resistance from Morganella sp.: towards understanding biochemical synthesis mechanism. ChemBioChem, 9(9), 1415-1422.
Sweeney, R. Y., Mao, C., Gao, X., Burt, J. L., Belcher, A. M., Georgiou, G., & Iverson, B. L. (2004). Bacterial biosynthesis of cadmium sulfide nanocrystals. Chemistry & biology, 11(11), 1553-1559.
Babu, M. G., & Gunasekaran, P. (2009). Production and structural characterization of crystalline silver nanoparticles from Bacillus cereus isolate. Colloids and surfaces B: Biointerfaces, 74(1), 191-195.
Ahmad, A., Senapati, S., Khan, M. I., Kumar, R., & Sastry, M. (2003). Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete, Thermomonospora sp. Langmuir, 19(8), 3550-3553.
Husseiny, M. I., Abd El-Aziz, M., Badr, Y., & Mahmoud, M. A. (2007). Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 67(3-4), 1003-1006.
Belliveau, B. H., Starodub, M. E., Cotter, C., & Trevors, J. T. (1987). Metal resistance and accumulation in bacteria. Biotechnology advances, 5(1), 101-127.
Waghmare, S. S., Deshmukh, A. M., Kulkarni, S. W., & Oswaldo, L. A. (2011). Biosynthesis and characterization of manganese and zinc nanoparticles. Universal Journal of Environmental Research & Technology, 1(1).
Gade, A. K., Bonde, P., Ingle, A. P., Marcato, P. D., Duran, N., & Rai, M. K. (2008). Exploitation of Aspergillus niger for synthesis of silver nanoparticles. Journal of Biobased Materials and Bioenergy, 2(3), 243-247.
Mukherjee, P., Ahmad, A., Mandal, D., Senapati, S., Sainkar, S. R., Khan, M. I., ... & Sastry, M. (2001). Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano letters, 1(10), 515-519.
Shankar, S. S., Ahmad, A., Pasricha, R., & Sastry, M. (2003). Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. Journal of Materials Chemistry, 13(7), 1822-1826.
Dameron, C. T., Reese, R. N., Mehra, R. K., Kortan, A. R., Carroll, P. J., Steigerwald, M. L., ... & Winge, D. R. (1989). Biosynthesis of cadmium sulphide quantum semiconductor crystallites. Nature, 338(6216), 596-597.
Jha, A. K., Prasad, K., Prasad, K., & Kulkarni, A. R. (2009). Plant system: nature's nanofactory. Colloids and Surfaces B: Biointerfaces, 73(2), 219-223.
Gericke, M., & Pinches, A. (2006). Microbial production of gold nanoparticles. Gold bulletin, 39(1), 22-28.
Kowshik, M., Ashtaputre, S., Kharrazi, S., Vogel, W., Urban, J., Kulkarni, S. K., & Paknikar, K. M. (2002). Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnology, 14(1), 95.
Nasir, S., Walters, K. F., Pereira, R. M., Waris, M., Chatha, A. A., Hayat, M., & Batool, M. (2022). Larvicidal activity of acetone extract and green synthesized silver nanoparticles from Allium sativum L.(Amaryllidaceae) against the dengue vector Aedes aegypti L.(Diptera: Culicidae). Journal of Asia-Pacific Entomology, 25(3), 101937.
Singaravelu, G., Arockiamary, J. S., Kumar, V. G., & Govindaraju, K. (2007). A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville. Colloids and surfaces B: Biointerfaces, 57(1), 97-101.
Rajesh, S., Raja, D. P., Rathi, J. M., & Sahayaraj, K. (2012). Biosynthesis of silver nanoparticles using Ulva fasciata (Delile) ethyl acetate extract and its activity against Xanthomonas campestris pv. malvacearum. Journal of Biopesticides, 5, 119.
Xie, J., Lee, J. Y., Wang, D. I., & Ting, Y. P. (2007). Identification of active biomolecules in the high‐yield synthesis of single‐crystalline gold nanoplates in algal solutions. small, 3(4), 672-682.
Kathiraven, T., Sundaramanickam, A., Shanmugam, N., & Balasubramanian, T. (2015). Green synthesis of silver nanoparticles using marine algae Caulerpa racemosa and their antibacterial activity against some human pathogens. Applied Nanoscience, 5, 499-504.
Duhan, J. S., Kumar, R., Kumar, N., Kaur, P., Nehra, K., & Duhan, S. (2017). Nanotechnology: The new perspective in precision agriculture. Biotechnology reports, 15, 11-23.
Rai, M., & Ingle, A. (2012). Role of nanotechnology in agriculture with special reference to management of insect pests. Applied microbiology and biotechnology, 94, 287-293.
Naderi, M. R., & Danesh-Shahraki, A. (2013). Nanofertilizers and their roles in sustainable agriculture.
Guo, H., White, J. C., Wang, Z., & Xing, B. (2018). Nano-enabled fertilizers to control the release and use efficiency of nutrients. Current Opinion in Environmental Science & Health, 6, 77-83.
Subbarao, C. V., Kartheek, G., & Sirisha, D. (2013). Slow release of potash fertilizer through polymer coating. International Journal of Applied science and engineering, 11(1), 25-30.
Bisinoti, M. C., Moreira, A. B., Melo, C. A., Fregolente, L. G., Bento, L. R., dos Santos, J. V., & Ferreira, O. P. (2019). Application of carbon-based nanomaterials as fertilizers in soils. In Nanomaterials applications for environmental matrices (pp. 305-333). Elsevier.
Kah, M., & Hofmann, T. (2014). Nanopesticide research: current trends and future priorities. Environment international, 63, 224-235.
Jampílek, J., & Kráľová, K. (2017). Nanopesticides: preparation, targeting, and controlled release. In New pesticides and soil sensors (pp. 81-127). Academic Press.
Singh, T., Shukla, S., Kumar, P., Wahla, V., Bajpai, V. K., & Rather, I. A. (2017). Application of nanotechnology in food science: perception and overview. Frontiers in microbiology, 8, 1501.
Graveland-Bikker, J. F., & De Kruif, C. G. (2006). Unique milk protein based nanotubes: food and nanotechnology meet. Trends in Food Science & Technology, 17(5), 196-203.
Fernández, A., Cava, D., Ocio, M. J., & Lagarón, J. M. (2008). Perspectives for biocatalysts in food packaging. Trends in Food Science & Technology, 19(4), 198-206.
Pradhan, N., Singh, S., Ojha, N., Shrivastava, A., Barla, A., Rai, V., & Bose, S. (2015). Facets of nanotechnology as seen in food processing, packaging, and preservation industry. BioMed research international, 2015(1), 365672.
Weir, A., Westerhoff, P., Fabricius, L., Hristovski, K., & Von Goetz, N. (2012). Titanium dioxide nanoparticles in food and personal care products. Environmental science & technology, 46(4), 2242-2250.
Carbone, M., Donia, D. T., Sabbatella, G., & Antiochia, R. (2016). Silver nanoparticles in polymeric matrices for fresh food packaging. Journal of King Saud University-Science, 28(4), 273-279.
Oberdörster, G., Stone, V., & Donaldson, K. (2007). Toxicology of nanoparticles: a historical perspective. Nanotoxicology, 1(1), 2-25.
Fernández, A., Cava, D., Ocio, M. J., & Lagarón, J. M. (2008). Perspectives for biocatalysts in food packaging. Trends in Food Science & Technology, 19(4), 198-206.
Pradhan, N., Singh, S., Ojha, N., Shrivastava, A., Barla, A., Rai, V., & Bose, S. (2015). Facets of nanotechnology as seen in food processing, packaging, and preservation industry. BioMed research international, 2015(1), 365672.
Weir, A., Westerhoff, P., Fabricius, L., Hristovski, K., & Von Goetz, N. (2012). Titanium dioxide nanoparticles in food and personal care products. Environmental science & technology, 46(4), 2242-2250.
Carbone, M., Donia, D. T., Sabbatella, G., & Antiochia, R. (2016). Silver nanoparticles in polymeric matrices for fresh food packaging. Journal of King Saud University-Science, 28(4), 273-279.
Emamifar, A., Kadivar, M., Shahedi, M., & Soleimanian-Zad, S. (2010). Evaluation of nanocomposite packaging containing Ag and ZnO on shelf life of fresh orange juice. Innovative Food Science & Emerging Technologies, 11(4), 742-748.
Valipoor Motlagh, N., Hamed Mosavian, M. T., & Mortazavi, S. A. (2013). Effect of polyethylene packaging modified with silver particles on the microbial, sensory and appearance of dried barberry. Packaging Technology and Science, 26(1), 39-49.
Yang, F. M., Li, H. M., Li, F., Xin, Z. H., Zhao, L. Y., Zheng, Y. H., & Hu, Q. H. (2010). Effect of nano‐packing on preservation quality of fresh strawberry (Fragaria ananassa Duch. cv Fengxiang) during storage at 4 C. Journal of food science, 75(3), C236-C240.
Martı́nez-Abad, A., Lagaron, J. M., & Ocio, M. J. (2012). Development and characterization of silver-based antimicrobial ethylene–vinyl alcohol copolymer (EVOH) films for food-packaging applications. Journal of agricultural and food chemistry, 60(21), 5350-5359.
Mahdi, S. S., Vadood, R., & Nourdahr, R. (2012). Study on the antimicrobial effect of nanosilver tray packaging of minced beef at refrigerator temperature.
Metak, A. M., & Ajaal, T. T. (2013). Investigation on polymer based nano-silver as food packaging materials. International Journal of Chemical and Molecular Engineering, 7(12), 1103-1109.
Metak, A. M. (2015). Effects of nanocomposite based nano-silver and nano-titanium dioxide on food packaging materials. International Journal of Applied Science and Technology, 5(2), 26-40.
Patel, A., Patra, F., Shah, N., & Khedkar, C. (2018). Application of nanotechnology in the food industry: present status and future prospects. Impact of nanoscience in the food industry, 1-27.
Khalaf, H. H., Sharoba, A. M., El-Tanahi, H. H., & Morsy, M. K. (2013). Stability of antimicrobial activity of pullulan edible films incorporated with nanoparticles and essential oils and their impact on turkey deli meat quality. Journal of Food and Dairy Sciences, 4(11), 557-573.
Elsaesser, A., & Howard, C. V. (2012). Toxicology of nanoparticles. Advanced drug delivery reviews, 64(2), 129-137.
Zoroddu, M. A., Medici, S., Ledda, A., Nurchi, V. M., Lachowicz, J. I., & Peana, M. (2014). Toxicity of nanoparticles. Curr. Med. Chem, 21(33), 3837-3853.
Zhang, S. X., Gao, J., Buchholz, T. A., Wang, Z., Salehpour, M. R., Drezek, R. A., & Yu, T. K. (2009). Quantifying tumor-selective radiation dose enhancements using gold nanoparticles: a monte carlo simulation study. Biomedical microdevices, 11, 925-933.
Zhang, X., Xing, J. Z., Chen, J., Ko, L., Amanie, J., Gulavita, S., ... & Roa, W. (2008). Enhanced radiation sensitivity in prostate cancer by gold-nanoparticles. Clinical and Investigative Medicine, 31(3), E160-E167.
Lara-González, J. H., Gomez-Flores, R., Tamez-Guerra, P., Monreal-Cuevas, E., Tamez-Guerra, R., & Rodríguez-Padilla, C. (2013). In vivo antitumor activity of metal silver and silver nanoparticles in the L5178Y-R murine lymphoma model. British Journal of Medicine and Medical Research, 3(4), 1308-1316.
Dhandapani, B., & Iyer, P. R. (2018). Biosynthesis, characterization and application of chitin nanoparticle with Cassia auriculata. American Journal of Biomedical and Life Sciences, 6(5), 96-102.
Ojo, S. A., Lateef, A., Azeez, M. A., Oladejo, S. M., Akinwale, A. S., Asafa, T. B., ... & Beukes, L. S. (2016). Biomedical and catalytic applications of gold and silver-gold alloy nanoparticles biosynthesized using cell-free extract of Bacillus safensis LAU 13: antifungal, dye degradation, anti-coagulant and thrombolytic activities. Ieee transactions on nanobioscience, 15(5), 433-442.
Rai, M., Deshmukh, S. D., Ingle, A. P., Gupta, I. R., Galdiero, M., & Galdiero, S. (2016). Metal nanoparticles: The protective nanoshield against virus infection. Critical reviews in microbiology, 42(1), 46-56.
Sharma, V., Kaushik, S., Pandit, P., Dhull, D., Yadav, J. P., & Kaushik, S. (2019). Green synthesis of silver nanoparticles from medicinal plants and evaluation of their antiviral potential against chikungunya virus. Applied microbiology and biotechnology, 103, 881-891.
Orłowski, P., Kowalczyk, A., Tomaszewska, E., Ranoszek-Soliwoda, K., Węgrzyn, A., Grzesiak, J., ... & Krzyzowska, M. (2018). Antiviral activity of tannic acid modified silver nanoparticles: potential to activate immune response in herpes genitalis. Viruses, 10(10), 524.
Oryan, A., Alemzadeh, E., Tashkhourian, J., & Ana, S. F. N. (2018). Topical delivery of chitosan-capped silver nanoparticles speeds up healing in burn wounds: A preclinical study. Carbohydrate polymers, 200, 82-92.
Ramya, S., Shanmugasundaram, T., & Balagurunathan, R. (2015). Biomedical potential of actinobacterially synthesized selenium nanoparticles with special reference to anti-biofilm, anti-oxidant, wound healing, cytotoxic and anti-viral activities. Journal of Trace Elements in Medicine and Biology, 32, 30-39.
Guo, S. A., & DiPietro, L. A. (2010). Factors affecting wound healing. Journal of dental research, 89(3), 219-229.
Kumar, A., Majumdar, R. S., & Dhewa, T. (2018). In vitro efficacy of biosynthesized AgNPs against Streptococcus mutans causing dental plaque formation.
Thomas, R., Snigdha, S., Bhavitha, K. B., Babu, S., Ajith, A., & Radhakrishnan, E. K. (2018). Biofabricated silver nanoparticles incorporated polymethyl methacrylate as a dental adhesive material with antibacterial and antibiofilm activity against Streptococcus mutans. 3 Biotech, 8, 1-10.
Rodrigues, M. C., Rolim, W. R., Viana, M. M., Souza, T. R., Gonçalves, F., Tanaka, C. J., ... & Seabra, A. B. (2020). Biogenic synthesis and antimicrobial activity of silica-coated silver nanoparticles for esthetic dental applications. Journal of Dentistry, 96, 103327.
Eid, A. M., Fouda, A., Niedbała, G., Hassan, S. E. D., Salem, S. S., Abdo, A. M., ... & Shaheen, T. I. (2020). Endophytic Streptomyces laurentii mediated green synthesis of Ag-NPs with antibacterial and anticancer properties for developing functional textile fabric properties. Antibiotics, 9(10), 641.
Fouda, A., Mohamed, A., Elgamal, M. S., EL-Din Hassan, S., Salem Salem, S., & Shaheen, T. I. (2017). Facile approach towards medical textiles via myco-synthesis of silver nanoparticles. Der Pharma Chemica, 9(13), 11-18.
Fouda, A., Saad, E. L., Salem, S. S., & Shaheen, T. I. (2018). In-Vitro cytotoxicity, antibacterial, and UV protection properties of the biosynthesized Zinc oxide nanoparticles for medical textile applications. Microbial pathogenesis, 125, 252-261.
Fernandes, M., Padrão, J., Ribeiro, A. I., Fernandes, R. D., Melro, L., Nicolau, T., ... & Zille, A. (2022). Polysaccharides and metal nanoparticles for functional textiles: A review. Nanomaterials, 12(6), 1006.
Sharma, S., & Bhattacharya, A. J. A. W. S. (2017). Drinking water contamination and treatment techniques. Applied water science, 7(3), 1043-1067.
Goutam, S. P., Saxena, G., Singh, V., Yadav, A. K., Bharagava, R. N., & Thapa, K. B. (2018). Green synthesis of TiO2 nanoparticles using leaf extract of Jatropha curcas L. for photocatalytic degradation of tannery wastewater. Chemical Engineering Journal, 336, 386-396.
Anjum, M., Miandad, R., Waqas, M., Gehany, F., & Barakat, M. A. (2019). Remediation of wastewater using various nano-materials. Arabian journal of chemistry, 12(8), 4897-4919.
Sadegh, H., Ali, G. A., Gupta, V. K., Makhlouf, A. S. H., Shahryari-Ghoshekandi, R., Nadagouda, M. N., ... & Megiel, E. (2017). The role of nanomaterials as effective adsorbents and their applications in wastewater treatment. Journal of Nanostructure in Chemistry, 7, 1-14.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Santosh Kumar S.R., Manoj Manjunath Bongale, Magesh Sachidanandam, Chandresh Maurya, Yuvraj, Prakash Pralhad Sarwade
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.