Influence of Microgravity on the Physiology, Pathogenicity and Antibiotic Efficacy of Microorganisms

Authors

  • Abhishek Dawar M.Sc., Department of Biotechnology, BMS Block 1, Sector 25, Panjab University, Chandigarh-160014, INDIA.
  • Rahul Warmoota PhD, Department of Microbiology, BMS Block 1, Sector 25, Panjab University, Chandigarh-160014, INDIA.

DOI:

https://doi.org/10.55544/jrasb.1.5.3

Keywords:

Microgravity, Microbiome, Secondary metabolism, Pathogenicity, Antibiotic efficacy

Abstract

Exploration beyond low earth orbit is a major challenge during space missions. The journey brings deleterious changes to the composition of bacterial flora of the spacecraft and compromises the immune system of the crew members significantly. Space exploration reduces immunological competence in crew members and is expected to create harmful alterations in the bacterial flora of the nasal, gastrointestinal, and respiratory tracts, increasing the susceptibility to disease. The pathogenicity character traits of bacteria and other microorganisms that pollute the material of the International Space Station as well as other flight platforms may be modified by the space flight environment, which may affect their vulnerability to antibiotics, which are important ingredients of flights medical setups. In conclusion susceptibility of microbes to antibiotics was affected and measures need to be studied in order to establish precautionary methods for future space missions. In this review we discussed the effect of spaceflights on microbial physiology; various challenges faced by the crew members and spacecraft equipment, and also highlighted methods to overcome these challenges during space flights for ensuring safety of the crew.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Ahmad, I. and Khan, M.S.A. (2012). Microscopy in mycological research with especial reference to ultrastructures and biofilm studies. Current microscopy contributions to advances in science and technology. Formatex Research Center, Spain, 646-659.

Altenburg, S.D., Nielsen-Preiss, S.M. and Hyman, L.E. (2008). Increased filamentous growth of Candida albicans in simulated microgravity. Genomics, proteomics & bioinformatics, 6(1), 42-50.

Andersen, B. and Hollensted, M. (2008). Metabolite production by different Ulocladium species. International journal of food microbiology, 126(1-2), 172-179.

Benoit, M.R. and Klaus, D.M. (2007). Microgravity, bacteria, and the influence of motility. Advances in Space Research, 39(7), 1225-1232.

Berdy, J. (2005). Bioactive microbial metabolites. The Journal of Antibiotics, 58(1), 1–26.

Carr, C. E., Bryan, N. C., Saboda, K. N., Bhattaru, S. A., Ruvkun, G., & Zuber, M. T. (2020). Nanopore sequencing at Mars, Europa, and microgravity conditions. Npj Microgravity, 6(1), 24. https://doi.org/10.1038/s41526-020-00113-9

Chunmei, J., Dan, G., Zhenzhu, L., Shuzhen, L., Junling, S., Dongyan, S., & S., D. I. (2021). Clinostat Rotation Affects Metabolite Transportation and Increases Organic Acid Production by Aspergillus carbonarius, as Revealed by Differential Metabolomic Analysis. Applied and Environmental Microbiology, 85(18), e01023-19. https://doi.org/10.1128/AEM.01023-19

Colotelo, N. (1978). Fungal exudates. Canadian Journal of Microbiology, 24(10), 1173–1181.

Crabbé, A., Nielsen-Preiss, S. M., Woolley, C. M., Barrila, J., Buchanan, K., McCracken, J., Inglis, D. O., Searles, S. C., Nelman-Gonzalez, M. A., Ott, C. M., Wilson, J. W., Pierson, D. L., Stefanyshyn-Piper, H. M., Hyman, L. E., & Nickerson, C. A. (2013). Spaceflight Enhances Cell Aggregation and Random Budding in Candida albicans. PLOS ONE, 8(12), e80677. https://doi.org/10.1371/journal.pone.0080677

Crabbé, A., Schurr, M. J., Monsieurs, P., Morici, L., Schurr, J., Wilson, J. W., Ott, C. M., Tsaprailis, G., Pierson, D. L., & Stefanyshyn-Piper, H. (2011). Transcriptional and proteomic responses of Pseudomonas aeruginosa PAO1 to spaceflight conditions involve Hfq regulation and reveal a role for oxygen. Applied and Environmental Microbiology, 77(4), 1221–1230.

Crucian, B. E., Choukèr, A., Simpson, R. J., Mehta, S., Marshall, G., Smith, S. M., Zwart, S. R., Heer, M., Ponomarev, S., & Whitmire, A. (2018). Immune system dysregulation during spaceflight: potential countermeasures for deep space exploration missions. Frontiers in Immunology, 9, 1437.

Crucian, B., Stowe, R. P., Mehta, S., Quiriarte, H., Pierson, D., & Sams, C. (2015). Alterations in adaptive immunity persist during long-duration spaceflight. Npj Microgravity, 1(1), 15013. https://doi.org/10.1038/npjmgrav.2015.13

Demain, A. L., & Fang, A. (2001). Secondary metabolism in simulated microgravity. The Chemical Record, 1(4), 333–346.

DiFrancesco, J. M., & Olson, J. M. (2015). The economics of microgravity research. Npj Microgravity, 1(1), 1–6.

Ferl, R. J., & Paul, A.-L. (2016). The effect of spaceflight on the gravity-sensing auxin gradient of roots: GFP reporter gene microscopy on orbit. Npj Microgravity, 2(1), 1–9.

Foster, J. W., & Spector, M. P. (1995). How Salmonella survive against the odds. Annual Review of Microbiology, 49(1), 145–174.

Friedrich, U. L. D., Joop, O., Pütz, C., & Willich, G. (1996). The slow rotating centrifuge microscope NIZEMI—a versatile instrument for terrestrial hypergravity and space microgravity research in biology and materials science. Elsevier.

Gao, H., Liu, Z., & Zhang, L. (2011). Secondary metabolism in simulated microgravity and space flight. Protein & Cell, 2(11), 858–861.

Garalde, D. R., Snell, E. A., Jachimowicz, D., Sipos, B., Lloyd, J. H., Bruce, M., Pantic, N., Admassu, T., James, P., & Warland, A. (2018). Highly parallel direct RNA sequencing on an array of nanopores. Nature Methods, 15(3), 201–206.

Gomoiu, I., Chatzitheodoridis, E., Vadrucci, S., & Walther, I. (2013). The Effect of Spaceflight on Growth of Ulocladium chartarum Colonies on the International Space Station. PLoS ONE, 8(4). https://doi.org/10.1371/JOURNAL.PONE.0062130

Höller, U., König, G. M., & Wright, A. D. (1999). A new tyrosine kinase inhibitor from a marine isolate of Ulocladium botrytis and new metabolites from the marine fungi Asteromyces cruciatus and Varicosporina ramulosa. European Journal of Organic Chemistry, 1999(11), 2949–2955.

Horneck, G., Klaus, D. M., & Mancinelli, R. L. (2010). Space microbiology. Microbiology and Molecular Biology Reviews, 74(1), 121–156.

Huang, B., Li, D.-G., Huang, Y., & Liu, C.-T. (2018). Effects of spaceflight and simulated microgravity on microbial growth and secondary metabolism. Military Medical Research, 5(1), 1–14.

Jain, M., Fiddes, I. T., Miga, K. H., Olsen, H. E., Paten, B., & Akeson, M. (2015). Improved data analysis for the MinION nanopore sequencer. Nature Methods, 12(4), 351–356.

Jain, M., Olsen, H. E., Paten, B., & Akeson, M. (2016). The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community. Genome Biology, 17(1), 1–11.

Juul, S., Izquierdo, F., Hurst, A., Dai, X., Wright, A., Kulesha, E., Pettett, R., & Turner, D. J. (2015). What’s in my pot? Real-time species identification on the MinIONTM. BioRxiv, 30742.

Kacena, M. A., Leonard, P. E., Todd, P., & Luttges, M. W. (1997). Low gravity and inertial effects on the growth of E. coli and B. subtilis in semi-solid media. Aviation, Space, and Environmental Medicine, 68(12), 1104–1108.

Kaur, I., Simons, E. R., Castro, V. A., Ott, C. M., & Pierson, D. L. (2004). Changes in neutrophil functions in astronauts. Brain, Behavior, and Immunity, 18(5), 443–450.

Kaur, I., Simons, E. R., Castro, V. A., Ott, C. M., & Pierson, D. L. (2005). Changes in monocyte functions of astronauts. Brain, Behavior, and Immunity, 19(6), 547–554.

Kim, W., Tengra, F. K., Shong, J., Marchand, N., Chan, H. K., Young, Z., Pangule, R. C., Parra, M., Dordick, J. S., & Plawsky, J. L. (2013). Effect of spaceflight on Pseudomonas aeruginosa final cell density is modulated by nutrient and oxygen availability. BMC Microbiology, 13(1), 1–10.

Kim, W., Tengra, F. K., Young, Z., Shong, J., Marchand, N., Chan, H. K., Pangule, R. C., Parra, M., Dordick, J. S., & Plawsky, J. L. (2013). Spaceflight promotes biofilm formation by Pseudomonas aeruginosa. PloS One, 8(4), e62437.

Kish, A. L., Hummerick, M., Roberts, M. S., Garland, J. L., Maxwell, S., & Mills, A. (2002). Biostability and microbiological analysis of Shuttle crew refuse. SAE Technical Paper, 1–2356.

Klaus, D. M., & Howard, H. N. (2006). Antibiotic efficacy and microbial virulence during space flight. Trends in Biotechnology, 24(3), 131–136.

Klaus, D., Simske, S., Todd, P., & Stodieck, L. (1997). Investigation of space flight effects on Escherichia coli and a proposed model of underlying physical mechanisms. Microbiology, 143(2), 449–455.

Koenig, D. W., & Pierson, D. L. (1997). Microbiology of the space shuttle water system. Water Science and Technology, 35(11–12), 59–64.

Lam, K. S., Gustavson, D. R., Pirnik, D. L., Pack, E., Bulanhagui, C., Mamber, S. W., Forenza, S., Stodieck, L. S., & Klaus, D. M. (2002). The effect of space flight on the production of actinomycin D by Streptomyces plicatus. Journal of Industrial Microbiology and Biotechnology, 29(6), 299–302.

Lam, K. S., Mamber, S. W., Pack, E. J., Forenza, S., Fernandes, P. B., & Klaus, D. M. (1998). The effects of space flight on the production of monorden by Humicola fuscoatra WC5157 in solid-state fermentation. Applied Microbiology and Biotechnology, 49(5), 579–583.

Lant, C. T., & Resnick, A. (2000). Multi-function light microscopy module for the International Space Station. AIP Conference Proceedings, 504(1), 324–329.

Leys, N., Baatout, S., Rosier, C., Dams, A., s’Heeren, C., Wattiez, R., & Mergeay, M. (2009). The response of Cupriavidus metallidurans CH34 to spaceflight in the international space station. Antonie Van Leeuwenhoek, 96(2), 227–245.

Li, S., & Mason, C. E. (2014). The pivotal regulatory landscape of RNA modifications. Annual Review of Genomics and Human Genetics, 15, 127–150.

Liang, Y., Strelkov, S. E., & Kav, N. N. V. (2010). The proteome of liquid sclerotial exudates from Sclerotinia sclerotiorum. Journal of Proteome Research, 9(6), 3290–3298.

Liu, M., Gao, H., Shang, P., Zhou, X., Ashforth, E., Zhuo, Y., Chen, D., Ren, B., Liu, Z., & Zhang, L. (2011). Magnetic field is the dominant factor to induce the response of Streptomyces avermitilis in altered gravity simulated by diamagnetic levitation. PLoS One, 6(10), e24697.

Loman, N. J., & Watson, M. (2015). Successful test launch for nanopore sequencing. Nature Methods, 12(4), 303–304.

Luo, A., Gao, C., Song, Y., Tan, H., & Liu, Z. (1998). Biological responses of a Streptomyces strain producing-nikkomycin to space flight. Hang Tian Yi Xue Yu Yi Xue Gong Cheng= Space Medicine & Medical Engineering, 11(6), 411–414.

Mahan, M. J., Slauch, J. M., & Mekalanos, J. J. (1996). Environmental regulation of virulence gene expression in Escherichia, Salmonella, and Shigella spp. Escherichia Coli and Salmonella: Cellular and Molecular Biology, 2, 2803–2815.

Maxwell, S., & Drysdale, A. E. (2001). Asssessment of Waste Processing Technologies for 3 Missions. SAE Technical Paper.

Mayer, F. L., Wilson, D., & Hube, B. (2013). Candida albicans pathogenicity mechanisms. Virulence, 4(2), 119–128. https://doi.org/10.4161/viru.22913

McCullough, M. J., Ross, B. C., & Reade, P. C. (1996). Candida albicans: a review of its history, taxonomy, epidemiology, virulence attributes, and methods of strain differentiation. International Journal of Oral and Maxillofacial Surgery, 25(2), 136–144. https://doi.org/https://doi.org/10.1016/S0901-5027(96)80060-9

McIntyre, A. B. R., Rizzardi, L., Yu, A. M., Alexander, N., Rosen, G. L., Botkin, D. J., Stahl, S. E., John, K. K., Castro-Wallace, S. L., McGrath, K., Burton, A. S., Feinberg, A. P., & Mason, C. E. (2016). Nanopore sequencing in microgravity. Npj Microgravity, 2(1), 16035. https://doi.org/10.1038/npjmgrav.2016.35

McPhee, W. J., & Colotelo, N. (1977). Fungal exudates. I. Characteristics of hyphal exudates in Fusarium culmorum. Canadian Journal of Botany, 55(3), 358–365.

Mehta, S. K., Laudenslager, M. L., Stowe, R. P., Crucian, B. E., Feiveson, A. H., Sams, C. F., & Pierson, D. L. (2017). Latent virus reactivation in astronauts on the international space station. NPJ Microgravity, 3(1), 1–8.

Mermel, L. A. (2013). Infection prevention and control during prolonged human space travel. Clinical Infectious Diseases, 56(1), 123–130.

Mikheyev, A. S., & Tin, M. M. Y. (2014). A first look at the Oxford Nanopore MinION sequencer. Molecular Ecology Resources, 14(6), 1097–1102.

Milojevic, T., & Weckwerth, W. (2020). Molecular mechanisms of microbial survivability in outer space: a systems biology approach. Frontiers in Microbiology, 11, 923.

Nickerson, C. A., Goodwin, T. J., Terlonge, J., Ott, C. M., Buchanan, K. L., Uicker, W. C., Emami, K., LeBlanc, C. L., Ramamurthy, R., & Clarke, M. S. (2001). Three-dimensional tissue assemblies: novel models for the study of Salmonella enterica serovar Typhimurium pathogenesis. Infection and Immunity, 69(11), 7106–7120.

Nickerson, C. A., Ott, C. M., Mister, S. J., Morrow, B. J., Burns-Keliher, L., & Pierson, D. L. (2000). Microgravity as a novel environmental signal affecting Salmonella enterica serovar Typhimurium virulence. Infection and Immunity, 68(6), 3147–3152.

Novikova, N. D. (2004). Review of the knowledge of microbial contamination of the Russian manned spacecraft. Microbial Ecology, 47(2), 127–132.

Novikova, N., De Boever, P., Poddubko, S., Deshevaya, E., Polikarpov, N., Rakova, N., Coninx, I., & Mergeay, M. (2006). Survey of environmental biocontamination on board the International Space Station. Research in Microbiology, 157(1), 5–12.

Ott, C. M., Bruce, R. J., & Pierson, D. L. (2004). Microbial characterization of free floating condensate aboard the Mir space station. Microbial Ecology, 47(2), 133–136.

Pollard, E. C. (1965). Theoretical studies on living systems in the absence of mechanical stress. Journal of Theoretical Biology, 8(1), 113–123.

Purevdorj-Gage, B., Sheehan, K. B., & Hyman, L. E. (2006). Effects of low-shear modeled microgravity on cell function, gene expression, and phenotype in Saccharomyces cerevisiae. Applied and Environmental Microbiology, 72(7), 4569–4575.

Rand, A. C., Jain, M., Eizenga, J., Musselman-Brown, A., Olsen, H. E., Akeson, M., & Paten, B. (2016). Cytosine variant calling with high-throughput nanopore sequencing. BioRxiv, 47134.

Rezzonico, F. (2014). Nanopore-based instruments as biosensors for future planetary missions. Astrobiology, 14(4), 344–351.

Rooney, B. V., Crucian, B. E., Pierson, D. L., Laudenslager, M. L., & Mehta, S. K. (2019). Herpes virus reactivation in astronauts during spaceflight and its application on earth. Frontiers in Microbiology, 10(feburay). https://doi.org/10.3389/FMICB.2019.00016/FULL

Rosenzweig, J. A., Abogunde, O., Thomas, K., Lawal, A., Nguyen, Y.-U., Sodipe, A., & Jejelowo, O. (2010). Spaceflight and modeled microgravity effects on microbial growth and virulence. Applied Microbiology and Biotechnology, 85(4), 885–891. https://doi.org/10.1007/s00253-009-2237-8

Saletore, Y., Meyer, K., Korlach, J., Vilfan, I. D., Jaffrey, S., & Mason, C. E. (2012). The birth of the Epitranscriptome: deciphering the function of RNA modifications. Genome Biology, 13(10), 1–12.

Sathishkumar, Y., Velmurugan, N., Lee, H. M., Rajagopal, K., Im, C. K., & Lee, Y. S. (2014). Effect of low shear modeled microgravity on phenotypic and central chitin metabolism in the filamentous fungi Aspergillus niger and Penicillium chrysogenum. Antonie van Leeuwenhoek, 106(2), 197–209.

Schultz, J. R., Taylor, R. D., Flanagan, D. T., Gibbons, R. E., Brown, H. D., Sauer, R. L., & Pierson, D. L. (1989). biofilm formation and control in a simulated spacecraft water system: Interim results. SAE Transactions, 964–973.

Senatore, G., Mastroleo, F., Leys, N., & Mauriello, G. (2018). Effect of microgravity & space radiation on microbes. Future Microbiology, 13(07), 831–847.

Sheet, S., Sathishkumar, Y., Sivakumar, A. S., Shim, K. S., & Lee, Y. S. (2017). Low-shear-modeled microgravity-grown Penicillium chrysogenum-mediated biosynthesis of silver nanoparticles with enhanced antimicrobial activity and its anticancer effect in human liver cancer and fibroblast cells. Bioprocess and Biosystems Engineering, 40(10), 1529–1542.

Simpson, J. T., Workman, R., Zuzarte, P. C., David, M., Dursi, L. J., & Timp, W. (2016). Detecting DNA methylation using the oxford nanopore technologies MinION sequencer. BioRxiv, 47142.

Song, B., & Leff, L. G. (2005). Identification and characterization of bacterial isolates from the Mir space station. Microbiological Research, 160(2), 111–117.

Sonnenfeld Gerald, Butel Janet S., & Shearer William T. (2003). Effects of the Space Flight Environment on the Immune System. Reviews on Environmental Health, 18(1), 1–18. https://doi.org/doi:10.1515/REVEH.2003.18.1.1

Sonnenfeld, G., & Shearer, W. T. (2002). Immune function during space flight. Nutrition, 18(10), 899–903.

Sugita, T., Yamazaki, T., Makimura, K., Cho, O., Yamada, S., Ohshima, H., & Mukai, C. (2016). Comprehensive analysis of the skin fungal microbiota of astronauts during a half-year stay at the International Space Station. Medical Mycology, 54(3), 232–239. https://doi.org/10.1093/mmy/myv121

Sviridov, S. I., Ermolinskii, B. S., Belyakova, G. A., & Dzhavakhiya, V. G. (1991). Secondary metabolites of Ulocladium chartarum. Ulocladols A and B—New phytotoxins of terpenoid nature. Chemistry of Natural Compounds, 27(5), 566–571.

Taylor, P. W. (2015). Impact of space flight on bacterial virulence and antibiotic susceptibility. Infection and Drug Resistance, 8, 249.

Thévenet, D., D’ari, R., & Bouloc, P. (1996). The SIGNAL experiment in BIORACK: Escherichia coli in microgravity. Journal of Biotechnology, 47(2–3), 89–97.

Thiel, C. S., Tauber, S., Seebacher, C., Schropp, M., Uhl, R., Lauber, B., Polzer, J., Neelam, S., Zhang, Y., & Ullrich, O. (2019). Real-time 3D high-resolution microscopy of human cells on the international space station. International Journal of Molecular Sciences, 20(8), 2033.

Tixador, R., Richoilley, G., Gasset, G., Templier, J., Bes, J. C., Moatti, N., & Lapchine, L. (1985). Study of minimal inhibitory concentration of antibiotics on bacteria cultivated in vitro in space (Cytos 2 experiment). Aviation, Space, and Environmental Medicine, 56(8), 748–751.

Vesper, S. J., Wong, W., Kuo, C. M., & Pierson, D. L. (2008). Mold species in dust from the International Space Station identified and quantified by mold-specific quantitative PCR. Research in Microbiology, 159(6), 432–435.

Viollier, P. H., Kelemen, G. H., Dale, G. E., Nguyen, K. T., Buttner, M. J., & Thompson, C. J. (2003). Specialized osmotic stress response systems involve multiple SigB‐like sigma factors in Streptomyces coelicolor. Molecular Microbiology, 47(3), 699–714.

Wilson, J. W., Ott, C. M., Zu Bentrup, K. H., Ramamurthy, R., Quick, L., Porwollik, S., Cheng, P., McClelland, M., Tsaprailis, G., & Radabaugh, T. (2007). Space flight alters bacterial gene expression and virulence and reveals a role for global regulator Hfq. Proceedings of the National Academy of Sciences, 104(41), 16299–16304.

Xiao, Y., Liu, Y., Wang, G., Hao, Z., & An, Y. (2010). Simulated microgravity alters growth and microcystin production in Microcystis aeruginosa (cyanophyta). Toxicon, 56(1), 1–7.

Downloads

Published

2022-12-01

How to Cite

Dawar, A., & Warmoota, R. (2022). Influence of Microgravity on the Physiology, Pathogenicity and Antibiotic Efficacy of Microorganisms. Journal for Research in Applied Sciences and Biotechnology, 1(5), 24–35. https://doi.org/10.55544/jrasb.1.5.3