Formulation Approaches for Deep Eutectic Solvents Solubilized APIs

Authors

  • Shweta Raj Rajeshwari Research Scholar, Department of Pharmaceutics Amity University Lucknow (U.P.), INDIA.

DOI:

https://doi.org/10.55544/jrasb.3.4.18

Keywords:

solubility enhancement, deep eutectic solvent, polymorphism, effectiveness of drug delivery, dermal and transdermal, drug and delivery

Abstract

Increasing the efficacy of currently available medications is one of the pharmaceutical industry's main objectives. It is far simpler to develop current medications or enhance their efficacy than to create novel therapeutic candidates. This can be accomplished by altering deep eutectic solvents are prepared for solubility in the formulation techniques improvements made to different Active Pharmaceutical Ingredients (APIs).

Usually, to modify DES, compounds having hazardous profiles that were previously well-known determined. DESs are thought to function as solubilization carriers. The evolution Organic solvents such as ethanol and acetone ethers are typically needed for soluble medicines.

The melting of APIs is improved as a result. Along with improving the solubility of currently available medications, DESs also has a number of other uses.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Petrova E. Innovation in the pharmaceutical industry: the process of drug discovery and development. In Innovation and Marketing in the Pharmaceutical Industry. Ding M, Eliashberg J, Stremersch S, editors. chapter

2.New York: Springer Science+Business Media; 2014. p. 19-81. 2. Hollis A An efficient reward system for pharmaceutical innovation. Submiss. to Comm. Intellect. Prop. Rights, Innov. Public Heal. 2004;1–29. [cited 2019 Apr 12]. Available from: http://www.who. int/intellectualproperty/news/Submission-Hollis6-Oct.pdf

Kalepu S, Nekkanti V. Insoluble drug delivery strategies: review of recent advances and business prospects. Acta Pharm Sin B. 2015;5:442–453.

Khadka P, Ro J, Kim H, et al. Pharmaceutical particle technologies: an approach to improve drug solubility, dissolution and bioavailability. Asian J Pharm Sci. 2014;9:304–316.

Allam AN, Gamal SSE, Naggar VF. Bioavailability: a pharmaceutical review. Int J Pharm Biotechnol. 2011;1:80–96

Savjani KT, Gajjar AK, Savjani JK. Drug solubility: importance and enhancement techniques. ISRN Pharm. 2012;2012:1–10.

Anubhav Dubey, Mamta Kumari, Vimal Kumar. Formulation and Evaluation of Antiviral Agent Loaded Polymeric Nanoparticles. May-June 2024, V2 – I3, Pages - 0163 – 0169. Doi: https://doi.org/10.55522/ijti.V2I3.0052.

Dubey, A., Kumari M., Sahu, V. K., Mishra, A Dash, S. L., &. (2024). Zebrafish as a fascinating animal model: a robust platform for in vivo screening for biomedical researches. International Journal of Agricultural Sciences and Veterinary Medicine, 12(1), 173–187. https://doi.org/10.25303/1201ijasvm034039

Dubey A, Samra, Sahu VK, Dash SL and Mishra A: A review on plant Opilia celtidifolia: an assessment of its botany, conventional utilization, phytochemistry and pharmacology. Int J Pharm Sci & Res 2024; 15(3): 690-98. doi: 10.13040/IJPSR.0975-8232.15(3).690-98.

Anubhav Dubey, Shilpi arora, Swikriti Sharma, Gurpreet Kaur, Vaishali Goel, Meenakshi Ghildiyal, & Mamta Kumari. (2024). A Systemic Education of Therapeutic Approaches Using Native Herbs to Treat Rheumatoid Joint Dysfunction. Educational Administration: Theory and Practice, 30(5), 67–83. https://doi.org/10.53555/kuey.v30i4.2774

Ansari M.V., Dash, S. L., Sahu, V. K., Dubey, A., Rathor V.P.S., &. (2024). An Update on the Chemical Composition and Pharmacological Profiles of Artemisia species. Alinteri J. of Agr. Sci. 39(2): 67-87 http://dergipark.gov.tr/alinterizbd.

Dubey, A., Kumari M., Pandey M., (2024). Homeopathic Medicinal Products and Importance in Diabetes International Journal of Homeopathy & Natural Medicines. 10(1), 17–26. https://doi.org/10.11648/j.ijhnm.20241001.12 13. Ferraz R, Branco LC, Prudêncio C, et al. Ionic liquids as active pharmaceutical ingredients. ChemMedChem. 2011;6:975–985.

Dubey, A., Ghosh, N. S., Singh, R. (2023). An in-depth and in vitro evaluation of the antioxidant and neuroprotective activity of aqueous and ethanolic extract of Asparagus racemosus Linn seed. Research Journal of Chemistry and Environment. 27 (10), Pages-46-66. https://doi.org/10.25303/2710rjce046066

Marrucho IM, Branco LC, Rebelo LPN. Ionic liquids in pharmaceutical applications. Annu Rev Chem Biomol Eng. 2014;5:527–546.

Sintra TE, Luís A, Rocha SN, et al. Enhancing the antioxidant characteristics of phenolic acids by their conversion into cholinium salts. ACS Sustain Chem Eng. 2015;3:2558–2565.

Hough WL, Smiglak M, Rodríguez H, et al. The third evolution of ionic liquids: active pharmaceutical ingredients. New J Chem. 2007;31:1429–1436.s

Berton P, Di Bona KR, Yancey D, et al. Transdermal bioavailability in rats of lidocaine in the forms of ionic liquids, salts, and deep eutectic. ACS Med Chem Lett. 2017;8:498–503.

Shamshina JL, Barber PS, Rogers RD. Ionic liquids in drug delivery. Expert Opin Drug Deliv. 2013;10:1367–1381.

Adawiyah N, Moniruzzaman M, Hawatulaila S, et al. Ionic liquids as a potential tool for drug delivery systems. Med Chem Commun. 2016;7:1881–1897.

Francisco M, Van Den Bruinhorst A, Kroon MC. Low-transitiontemperature mixtures (LTTMs): a new generation of designer solvents. Angew Chemie Int Ed. 2013;52:3074–3085.

Martins MAR, Pinho SP, Coutinho JAP. Insights into the nature of eutectic and deep eutectic mixtures. J Solution Chem. 2018;1–21. •• This article allows a better understanding of the DES concept

Abbott AP, Capper G, Davies DL, et al. Novel solvent properties of choline chloride/urea mixtures. Chem Commun. 2003;70–71.

Smith EL, Abbott AP, Ryder KS. Deep eutectic solvents (DESs) and their applications. Chem Rev. 2014;114:11060–11082.

Peng Y, Lu X, Liu B, et al. Separation of azeotropic mixtures (ethanol and water) enhanced by deep eutectic solvents. Fluid Phase Equilib. 2017;448:128–134.

Zhang Q, De Oliveira Vigier K, Royer S, et al. Deep eutectic solvents: syntheses, properties and applications. Chem Soc Rev. 2012;41:7108.

de Morais P, Gonçalves F, Coutinho JAP, et al. Ecotoxicity of cholinium-based deep eutectic solvents. ACS Sustain Chem Eng. 2015;3:3398–3404.

Hayyan M, Mbous YP, Looi CY, et al. Natural deep eutectic solvents: cytotoxic profile. Springerplus. 2016;5:913. 28. Wen Q, Chen J-X, Tang Y-L, et al. Assessing the toxicity and biodegradability of deep eutectic solvents. Chemosphere. 2015;132:63–69.

Paiva A, Craveiro R, Aroso I, et al. Natural deep eutectic solvents – solvents for the 21st century. ACS Sustain Chem Eng. 2014;2:1063–1071.

Martins M, Aroso IM, Reis RL, et al. Enhanced performance of supercritical fluid foaming of natural-based polymers by deep eutectic solvents. Am Inst Chem Eng. 2014;60:3701–3706.

Mukesh C, Upadhyay KK, Devkar RV, et al. Preparation of a noncytotoxic hemocompatible ion gel by self-polymerization of HEMA in a green deep eutectic solvent. Macromol Chem Phys. 2016;217:1899–1906.

Quality assurance of pharmaceuticals. A compendium of guidelines and related materials by World Health Organization. 2nd Ed. 2. 2007. [cited 2018 Oct 16].

Dubey, A. ., Ghosh, N. S. ., & Singh, R. . (2023). A Toxicological Study on Seed Extracts of Asparagus Racemosus Linn (Ethanolic and Water) in Experimental Animals. Journal of Advanced Zoology, 44(2), 71–78. https://doi.org/10.17762/jaz.v44i2.194

Dubey, A., Samra, S., Sahu, V. K., Dash, S. L., & Mishra, A. (2023). A Screening Models of (In Vivo And In Vitro) Used for the Study of Hepatoprotective Agents. Journal of Advanced Zoology, 44(3), 173–187. https://doi.org/10.17762/jaz.v44i3.578.

Dash, S. L., Gupta, P. ., Dubey, A. ., Sahu, V. K. ., & Amit Mishra. (2023). An Experimental Models (In-Vivo and In-Vitro) Used for the Study of Antidiabetic agents. Journal of Advanced Zoology, 44(4), 86–95. https://doi.org/10.17762/jaz.v44i4.1461

Dubey Anubhav, Basak Mrinmoy, Dey Biplab and Ghosh Niladry, (2023). Queen of all herbs (Asparagus racemosus): an assessment of its botany, conventional utilization, phytochemistry and pharmacology. Research Journal of Biotechnology.18(6), Pages- 146-154. https://doi.org/10.25303/1806rjbt1460154.

Anubhav Dubey, Niladry Sekhar Ghosh, Anubha Gupta, Shweta Singh, 2023. A review on current epidemiology and molecular studies of lumpy skin disease virus-an emerging worldwide threat to domestic animals. Journal of medical pharmaceutical and allied sciences, V 12 - I 1, Pages - 5635 – 5643.DOI: 10.55522/jmpas.V12I1.4583.

Pate S, Dubey A, Gupta Ak, Ghosh NS, (2023). Evaluation of Antimicrobial Activity of Calotropis Gigantea Extracts on Two Main Skin Infection Causing Bacteria - Escherichia Coli and Staphylococcus Aureus.12(1):145-157.

Dubey A, Ghosh NS, Singh R. Zebrafish as An Emerging Model: An Important Testing Platform for Biomedical Science. J Pharm Negative Results 2022;13(3): 1-7.DOI:10.47750/pnr.2022.13.03.001.

41. Olivares B, Martínez F, Rivas L, et al. A natural deep eutectic solvent formulated to stabilize β -lactam antibiotics. Sci Rep. 2018; 8:1–12.

Faggian M, Sut S, Perissutti B, et al. Natural deep eutectic solvents (NADES) as a tool for bioavailability improvement: pharmacokinetics of rutin dissolved in proline/glycine after oral administration in rats: possible application in nutraceuticals. Molecules. 2016; 21:1–11.

Sut S, Faggian M, Baldan V, et al. Natural deep eutectic solvents (NADES) to enhance berberine absorption: an in vivo pharmacokinetic study. Molecules. 2017; 22:1921

Aroso IM, Craveiro R, Rocha Â, et al. Design of controlled release systems for THEDES - therapeutic deep eutectic solvents, using supercritical fluid technology. Int J Pharm. 2015; 492:73–79.

Tibbitt MW, Dahlman JE, Langer R. 2016. Emerging Frontiers in Drug Delivery. J Am Chem Soc. 138(3):704-717.

Kumari A, Yadav SK, Yadav SC. 2010. Biodegradable polymeric nanoparticles-based drug delivery systems. Colloids Surf B Biointerfaces. 75(1).

Durand E, Lecomte J, Baréa B, Piombo G, Dubreucq E, Villeneuve P. 2012. Evaluation of deep eutectic solvents as new media for Candida antarctica B lipase catalyzed reactions. Process Biochem. 47(12):2081-2089.

del Monte F, Carriazo D, Serrano MC, Gutiérrez MC, Ferrer ML. 2014. Deep Eutectic Solvents in Polymerizations: A Greener Alternative to Conventional Syntheses. ChemSusChem. 7(4):999- 1009.

Chen F, Xie S, Zhang J, Liu R. 2013. Synthesis of spherical Fe3O4 magnetic nanoparticles by coprecipitation in choline chloride/urea deep eutectic solvent. Mater Lett. 112:177-179. Chen J, Li S-f, Yao Z-f, Yang D-w, Zhang L-w. 2016.

Carriazo D, Serrano MC, Gutiérrez MC, Ferrer ML, del Monte F. 2012. Deep-eutectic solvents playing multiple roles in the synthesis of polymers and related materials [10.1039/C2CS15353J]. Chem Soc Rev. 41(14):4996-5014.

Mota-Morales JD, Sánchez-Leija RJ, Carranza A, Pojman JA, del Monte F, Luna-Bárcenas G. 2018. Free-radical polymerizations of and in deep eutectic solvents: Green synthesis of functional materials. Prog Polym Sci. 78:139-153.

Emami S, Jouyban A, Valizadeh H, Shayanfar A. 2015. Are Crystallinity Parameters Critical forDrug Solubility Prediction? [journal article]. J Solution Chem. 44(12):2297-2315.

Qi X, Wei W, Li J, Liu Y, Hu X, Zhang J, Bi L, Dong W. 2015. Fabrication and Characterization of a Novel Anticancer Drug Delivery System: Salecan/Poly (methacrylic acid) Semi-interpenetrating Polymer Network Hydrogel. ACS Biomaterials Science & Engineering. 1(12):1287-1299.

Zhang J, Wu T, Chen S, Feng P, Bu X. 2009. Versatile Structure-Directing Roles of Deep-Eutectic Solvents and Their Implication in the Generation of Porosity and Open Metal Sites for Gas Storage. Angew Chem Int Ed. 48(19):3486-3490.

Dubey, Anubhav, Niladry Sekhar Ghosh, Nidhee Agnihotri and Amit Kumar et al. “Herbs Derived Bioactive Compounds and their Potential for the Treatment of Neurological Disorders.” Clin Schizophr Relat Psychoses 16 (2022). Doi: 10.3371/CSRP.DANG.081922.

Kumari, M., Dubey, A., Agarwal, S., Kushwaha, S., & Sachan, A. K. (2023). Recent Technology and Software for GDP in the Pharmaceutical Industry. International Journal of Pharmaceutical Sciences and Nanotechnology (IJPSN), 16(5), 7004–7007. https://doi.org/10.37285/ijpsn.2023.16.5.9

Dubey, A., Ghosh, N. S.., & Singh, R.S., (2023). Effects of aqueous and ethanolic seed extract of Asparagus racemosus Linn on neurobehavioral pattern of acrylamide induced experimental Zebra fish. Research Journal of Biotechnology.18(11),81-88. https://doi.org/10.25303/1811rjbt081088.

Dubey, A., Ghosh, N. S.., & Singh, R.S., (2023). Role of Aqueous and Ethanolic Seed Extract of Asparagus racemosus on Acr- Induced Neurotoxicity in Adult Zebrafish: Emergence of Neuroprotective Results. Egyptian Journal of Aquatic Biology & Fisheries, 27(6), 285-296.DOI: 10.21608/EJABF.2023.329192

Kumari, M., Dubey, A., Agarwal, S., Kushwaha, S., & Sachan, A. K. (2023). Recent Technology and Software for GDP in the Pharmaceutical Industry. International Journal of Pharmaceutical Sciences and Nanotechnology (IJPSN), 16(5), 7004–7007. https://doi.org/10.37285/ijpsn.2023.16.5.

Dubey, A., Ghosh, N. S.., & Singh, R.S., (2023). Role of Aqueous and Ethanolic Seed Extract of Asparagus racemosus on Acr- Induced Neurotoxicity in Adult Zebrafish: Emergence of Neuroprotective Results. Egyptian Journal of Aquatic Biology & Fisheries, 27(6), 285-296.DOI: 10.21608/EJABF.2023.32919261.

Gajraj NM, Pennant JH, Watcha MF. 1994. Eutectic Mixture of Local Anesthetics (EMLA®) Cream. Anesth Analg. 78(3):574-583.

Porst H, Burri A. 2017. Fortacin Spray for the Treatment of Premature Ejaculation. Urologia. 84(2_suppl):1-10.

Stott PW, Williams AC, Barry BW. 1998. Transdermal delivery from eutectic systems: enhanced permeation of a model drug, ibuprofen. J Controlled Release. 50(1):297-308.

Stott PW, Williams AC, Barry BW. 1998. Transdermal delivery from eutectic systems: enhanced permeation of a model drug, ibuprofen. J Control Release. 50(1-3):297-308.

Kaplun-Frischoff Y, Touitou E. 1997. Testosterone Skin Permeation Enhancement by Menthol through Formation of Eutectic with Drug and Interaction with Skin Lipids. J Pharm Sci. 86(12):1394-1399.

Abbott AP, Ahmed EI, Prasad K, Qader IB, Ryder KS. 2017. Liquid pharmaceuticals formulation by eutectic formation. Fluid Phase Equilib. 448:2-8.

Wolbert F, Brandenbusch C, Sadowski G. 2019. Selecting Excipients Forming Therapeutic Deep Eutectic Systems—A Mechanistic Approach. Mol Pharm. 16(7):3091-3099.

Zakrewsky M, Lovejoy KS, Kern TL, Miller TE, Le V, Nagy A, Goumas AM, Iyer RS, Del Sesto RE, Koppisch AT et al. 2014: Ionic liquids as a class of materials for transdermal delivery and pathogen neutralization. Proc Natl Acad Sci U S A. 111

Wang W, Cai Y, Liu Y, Zhao Y, Feng J, Liu C. 2017. Microemulsions based on paeonol-menthol eutectic mixture for enhanced): transdermal delivery: formulation development and in vitro evaluation. Artif Cells Nanomed Biotechnol. 45(6):1-6.

Sapra B, Jain S, Tiwary AK. 2008. Percutaneous Permeation Enhancement by Terpenes: Mechanistic View [journal article]. The AAPS Journal. 10(1):120.

Engelbrecht TN, Demé B, Dobner B, Neubert RHH. 2012. Study of the Influence of the Penetration Enhancer Isopropyl Myristate on the Nanostructure of Stratum Corneum Lipid Model Membranes Using Neutron Diffraction and Deuterium Labelling. Skin Pharmocol Physiol. 25(4):200-207.

Brown MB, Martin GP, Jones SA, Akomeah FK. 2006. Dermal and Transdermal Drug Delivery Systems: Current and Future Prospects. Drug Deliv. 13(3):175-187.

Alvarez-Román R, Merino G, Kalia YN, Naik A, Guy RH. 2003. Skin permeability enhancement by low frequency sonophoresis: Lipid extraction and transport pathways. J Pharm Sci. 92(6):1138- 1146.

Prausnitz MR, Mitragotri S, Langer R. 2004. Current status and future potential of transdermal drug delivery [Review Article]. Nature Reviews Drug Discovery. 3:115.

Naik A, Kalia YN, Guy RH. 2000. Transdermal drug delivery: overcoming the skin’s barrier function. Pharm Sci Technolo Today. 3(9):318-326.

Pham QD, Björklund S, Engblom J, Topgaard D, Sparr E. 2016. Chemical penetration enhancers in stratum corneum — Relation between molecular effects and barrier function. J Controlled Release. 232:175-187.

Nanda A, Nanda S, Ghilzai NM. 2006. Current developments using emerging transdermal technologies in physical enhancement methods. Curr Drug Deliv. 3(3):233-242.

Dubey V, Mishra D, Asthana A, Jain NK. 2006. Transdermal delivery of a pineal hormone: Melatonin via elastic liposomes. Biomaterials. 27(18):3491-3496.

Karande P, Mitragotri S. 2009. Enhancement of transdermal drug delivery via synergistic action of chemicals. Biochim Biophys Acta. 1788(11) :2362-2373.

Banerjee A, Ibsen K, Iwao Y, Zakrewsky M, Mitragotri S. 2017. Transdermal Protein Delivery Using Choline and Geranate (CAGE) Deep Eutectic Solvent. Adv Healthc Mater. 6(15):1601411; Benson HAE, Namjoshi S. 2008, Proteins and Peptides: Strategies for Delivery to and Across the Skin. J Pharm Sci. 97(9):3591-3610.

Dubey, A., Tiwari, D., Singh, Y., & Prakash, O. (2021). PankajSingh. Drug repurposing in Oncology: Opportunities and challenges. Int J of Allied Med Sci and Clin Res, 9(1), 68-87.

Meher, C. P., Purohit, D., Kumar, A., Singh, R., & Dubey, A. (2022). An updated review on morpholine derivatives with their pharmacological actions. International Journal of Health Sciences, 6(S3), 2218–2249. https://doi.org/10.53730/ijhs.v6nS3.5983.

Patnaik, S., Purohit, D., Biswasroy, P., Diab, W. M., & Dubey, A. (2022). Recent advances for commedonal acne treatment by employing lipid nanocarriers topically. International Journal of Health Sciences, 6(S8), 180–205. https://doi.org/10.53730/ijhs.v6nS8.9671

Anubhav Dubey, Deepanshi Tiwari, Kshama Srivastava, Om Prakash and Rohit Kushwaha. A discussion on vinca plant. J Pharmacogn Phytochem 2020;9(5):27-31.

kumar, R., Saha, P., Nyarko, R., Lokare, P., Boateng, A., Kahwa, I., Owusu Boateng, P., & Asum, C. (2022). Effect of Covid-19 in Management of Lung Cancer Disease: A Review. Asian Journal of Pharmaceutical Research and Development, 10(3), 58-64. https://doi.org/https://doi.org/10.22270/ajprd.v10i3.113.

Mukesh C, Mondal D, Sharma M, et al. Choline chloride-thiourea, a deep eutectic solvent for the production of chitin nanofibers. Carbohydr Polym. 2014; 103:466–471.

Nilsson A, Wallin B, Rotstein A, et al. The EMLA patch–a new type of local anaesthetic Jablonský M, Škulcová A, Šima J. 2019. Use of Deep Eutectic Solvents in Polymer Chemistry–A Review. Molecules. 24(21):3978. Application for dermal analgesia in children. Anaesthesia. 1994; 49:70–72.

Chang PC, Goresky GV, O’Connor G, et al. A multicentre randomized study of single-unit dose package of EMLA patch vs EMLA 5% cream for venepuncture in children. Can J Anaesth. 1994; 41:59–63.

Scherlund M, Brodin A, Malmsten M. Nonionic cellulose ethers as potential drug delivery systems for periodontal anesthesia. J Colloid Interface Sci. 2000; 229:365–374

Lichtfouse E, Schwarzbauer J, Robert D (Eds.). Pollutant Diseases, Remediation and Recycling. Vol. 4, 2013. Switzerland: Springer International Publishing.

Silva JMM, Reis RL, Paiva A, et al. Design of functional therapeutic deep eutectic solvents based on choline chloride and ascorbic acid Design of functional therapeutic deep eutectic solvents based on choline chloride and ascorbic acid. ACS Sustainable Chem Eng. 2018; 6:10355–10363.

Mano F, Martins M, Sá-Nogueira I, et al. Production of electrospun fast-dissolving drug delivery systems with therapeutic eutectic systems encapsulated in gelatin. AsAPS PharmSciTech.

ChemAxon (2016) MarvinSketch, version 169.12. ChemAxon, Budapest.

Chen L, Sharifzadeh M, Mac Dowell N, Welton T, Shah N, Hallett JP. 2014. Inexpensive ionic liquids: [HSO4]−based solvent production at bulk scale [10.1039/C4GC00016A]. Green Chem. 16(6):3098-3106.

Jablonský M, Škulcová A, Šima J. 2019. Use of Deep Eutectic Solvents in Polymer Chemistry–A Review. Molecules. 24(21):3978.

Cruz H, Jordão N, Branco LC. 2017. Deep eutectic solvents (DESs) as low-cost and green electrolytes for electrochromic devices [10.1039/C7GC00347A]. Green Chem. 19(7):1653-1658. Cui W, Li J, Decher G. 2016. Self-Assembled Smart Nanocarriers for Targeted Drug Delivery. Adv Mater. 28(6):1302-1311.

Zahn S. 2017. Deep eutectic solvents: similia similibus solvuntur? [10.1039/C6CP08017K]. PCCP. 19(5):4041-4047.

Tang B, Row KH. 2013a. Recent developments in deep eutectic solvents in chemical sciences. Monatshefte für Chemie-Chemical Monthly. 144(10):1427-1454.

Abbott AP, Capper G, Davies DL, Rasheed RK, Tambyrajah V. 2003. Novel solvent properties of choline chloride/urea mixtures [10.1039/B210714G]. Chem Commom (1):70-71

Guajardo N, Domínguez de María P, Ahumada K, Schrebler RA, Ramírez-Tagle R, Crespo FA, Carlesi C. 2017. Water as Cosolvent: Nonviscous Deep Eutectic Solvents for Efficient LipaseCatalyzed Esterifications. ChemCatChem. 9(8):1393-1396.

Arora S, Dubey A, Kumari M. The role of 3- D printing technologies. Int J Pharm Chem Anal 2024;11(2):112-120. https://doi.org/10.18231/j.ijpca.2024.016.

Sharma, D.; Ruhil, B.; Dubey, A.; Jain, D.; Bhatia, D.; Koubouris, G. Unlocking Rapid and User-Friendly Strategies to Improve Horticultural Crop Qualities. Horticulturae 2024, 10, 779. https://doi.org/10.3390/horticulturae10080779.

Downloads

Published

2024-09-13

How to Cite

Rajeshwari, S. R. (2024). Formulation Approaches for Deep Eutectic Solvents Solubilized APIs. Journal for Research in Applied Sciences and Biotechnology, 3(4), 142–162. https://doi.org/10.55544/jrasb.3.4.18