Therapeutic and Pharmacological Properties of Pumpkin Seeds: A Comprehensive Review

Authors

  • Silky Research Scholar, Department of Food Science and Nutrition, Banasthali Vidyapith, Rajasthan - 304022, INDIA.
  • Gita Bisla Associate Professor, Department of Food Science and Nutrition, Banasthali Vidyapith, Rajasthan - 304022, INDIA.
  • Srishti Research Scholar, Department of Food Science and Nutrition, Banasthali Vidyapith, Rajasthan - 304022, INDIA.

DOI:

https://doi.org/10.55544/jrasb.3.4.14

Keywords:

Pumpkin, Seeds, Pharmaceutical, Hyperglycemia, Pharmacological, Prevention

Abstract

A well-known edible plant in the Cucurbitaceae family, the pumpkin has long been utilized as a functional meal or a herbal remedy. Pumpkin seeds are rich in phytoestrogens, vitamin E, and unsaturated fatty acids, which may have medicinal and nutraceutical uses. The use of pumpkins in traditional medicine to treat a wide range of conditions, including inflammation, dyslipidemia, bacterial or fungal infections, malignancies, intestinal parasites, hypertension, arthritis, and hyperglycemia, has drawn attention to the need for additional study on both the fruits and seeds of the pumpkin plant. Proteins, antioxidative phenolic compounds, tocopherols, triterpenes, saponins, phytosterols, lignans, and carotenoids are some of the micro- and macro-constituent compositions that improve pumpkin seeds. Pumpkin seeds have antidepressant properties and are mostly used in the management of benign prostatic hyperplasia (BHP). Regular pumpkin seed eating lowers the risk of Parkinson's and Alzheimer's disease. Since pumpkin seeds are high in tocopherols, they can be extracted for edible oil and then used to formulate other foods at a later time. The pharmacological effects of pumpkin seeds have made them quite popular. Additionally, pumpkin seed oil has numerous health advantages. Pumpkin seeds are mostly composed of unsaturated fatty acids, which have been shown to provide potential health benefits and to prevent disease. Although pumpkin seeds are clearly very useful, their full potential has not yet been discovered.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Abdel-Rahman, M. K. (2006). Effect of pumpkin seed (Cucurbita pepo L.) diets on benign prostatic hyperplasia (BPH): chemical and morphometric evaluation in rats. World J Chem, 1(1), 33-40.

Adams, G. G., Imran, S., Wang, S., Mohammad, A., Kok, M. S., Gray, D. A., & Harding, S. E. (2014). The hypoglycemic effect of pumpkin seeds, Trigonelline (TRG), Nicotinic acid (NA), and D-Chiro-inositol (DCI) in controlling glycemic levels in diabetes mellitus. Critical reviews in food science and nutrition, 54(10), 1322-1329. https://doi.org/10.1080/10408398.2011.635816.

Adams, G. G., Imran, S., Wang, S., Mohammad, A., Kok, M. S., Gray, D. A., & Harding, S. E. (2014). The hypoglycemic effect of pumpkin seeds, Trigonelline (TRG), Nicotinic acid (NA), and D-Chiro-inositol (DCI) in controlling glycemic levels in diabetes mellitus. Critical reviews in food science and nutrition, 54(10), 1322-1329.

Adams, G. G., Imran, S., Wang, S., Mohammad, A., Kok, S., Gray, D. A., & Harding, S. E. (2011). The hypoglycaemic effect of pumpkins as anti-diabetic and functional medicines. Food Research International, 44(4), 862-867.

Akwaowo, E. U., Ndon, B. A., & Etuk, E. U. (2000). Minerals and antinutrients in fluted pumpkin (Telfairia occidentalis Hook f.). Food chemistry, 70(2), 235-240.

Al Zuhair, H. A. N. A., Abd El-Fattah, A. A., & El-Sayed, M. I. (2000). Pumpkin-seed oil modulates the effect of felodipine and captopril in spontaneously hypertensive rats. Pharmacological Research, 41(5), 555-563.

Alhakamy, N. A., Fahmy, U. A., & Ahmed, O. A. (2019). RETRACTED: Attenuation of Benign Prostatic Hyperplasia by Optimized Tadalafil Loaded Pumpkin Seed Oil-Based Self Nanoemulsion: In Vitro and In Vivo Evaluation. Pharmaceutics, 11(12), 640. https://doi.org/10.3390/pharmaceutics11120640

Alhawiti, A. O., Toulah, F. H., & Wakid, M. H. (2019). Anthelmintic potential of Cucurbita pepo Seeds on Hymenolepis nana. Acta Parasitologica, 64, 276-281. https://doi.org/10.2478/s11686-019-00033-z

Amin, F., Islam, N., Anila, N., Gilani, A.H., 2015. Clinical efficacy of the co-administration of Turmeric and Black seeds (Kalongi) in metabolic syndrome. a double blind randomized controlled trial –TAK- MetS trial. Complement. Ther. Med. 23, 165–174. https://doi.org/10.1016/j.ctim.2015.01.008

Amin, M. Z., Rity, T. I., Uddin, M. R., Rahman, M. M., & Uddin, M. J. (2020). A comparative assessment of anti-inflammatory, anti-oxidant and anti-bacterial activities of hybrid and indigenous varieties of pumpkin (Cucurbita maxima Linn.) seed oil. Biocatalysis and agricultural biotechnology, 28, 101767. https://doi.org/10.1016/j.bcab.2020.101767

Badu, M., Pedavoah, M. M., & Dzaye, I. Y. (2020). Proximate composition, antioxidant properties, mineral content and anti-nutritional composition of Sesamum indicum, Cucumeropsis edulis and Cucurbita pepo seeds grown in the savanna regions of Ghana. Journal of Herbs, Spices & Medicinal Plants, 26(4), 329-339. https://doi.org/10.1080/10496475.2020.1747581

Betancur-Ancona, D., Segura-Campos, M., Rosado-Rubio, J. G., Franco, L. S., & Chel-Guerrero, L. (2012). Chemical composition and anti-nutritional factors in five tropical legume seeds. Nutr Consum Health, Beans, 117-141.

Betancur-Ancona, D., Segura-Campos, M., Rosado-Rubio, J. G., Franco, L. S., & Chel-Guerrero, L. (2012). Chemical composition and anti-nutritional factors in five tropical legume seeds. Nutr Consum Health, Beans, 117-141.

Bharti, S. K., Kumar, A., Sharma, N. K., Prakash, O., Jaiswal, S. K., Krishnan, S., & Kumar, A. (2013). Tocopherol from seeds of Cucurbita pepo against diabetes: Validation by in vivo experiments supported by computational docking. Journal of the Formosan Medical Association, 112(11), 676-690. https://doi.org/10.1016/j.jfma.2013.08.003

Białek, M., Rutkowska, J., Adamska, A., & Bajdalow, E. (2016). Partial replacement of wheat flour with pumpkin seed flour in muffins offered to children. CyTA-Journal of Food, 14(3), 391-398.

Brogan, D. M., & Mossialos, E. (2016). A critical analysis of the review on antimicrobial resistance report and the infectious disease financing facility. Globalization and health, 12, 1-7. https://doi.org/10.1186/s12992-016-0147-y

Caili, F. U., Huan, S., & Quanhong, L. I. (2006). A review on pharmacological activities and utilization technologies of pumpkin. Plant foods for human nutrition, 61, 70-77. , https://doi.org/10.1007/s11130-006-0016-6

Ceclu, L., & Nistor, O. V. (2020). Red beetroot: Composition and health effects—A review. J. Nutr. Med. Diet Care, 6(1), 1-9. https://doi.org/10.23937/2572-3278.1510043

Chandrasekar, R., & Sivagami, B. (2021). Edible seeds medicinal value, therapeutic applications and functional properties: a review. Int. J. Pharm. Pharm. Sci, 13, 11-18. https://doi.org/10.22159/ijpps.2021v13i7.41436

Chari, K. Y., Polu, P. R., & Shenoy, R. R. (2018). An appraisal of pumpkin seed extract in 1, 2‐dimethylhydrazine induced colon cancer in wistar rats. Journal of toxicology, 2018(1), 6086490. https://doi.org/10.1155/2018/6086490

Chelliah, R., Ramakrishnan, S. R., Antony, U., Kim, S. H., Khan, I., Tango, C. N., & Oh, D. H. (2018). Antihypertensive effect of peptides from sesame, almond, and pumpkin seeds: in-silico and in-vivo evaluation. Journal of Agricultural, Life and Environmental Sciences, 30(1), 12-30. https://doi.org/10.12972/jales.20180002

Chen, H., Lombès, M., & Le Menuet, D. (2017). Glucocorticoid receptor represses brain-derived neurotrophic factor expression in neuron-like cells. Molecular brain, 10(1), 12.

Dhiman, K., Gupta, A., Sharma, D. K., Gill, N. S., & Goyal, A. (2012). A review on the medicinally important plants of the family Cucurbitaceae. https://doi.org/10.3923/ajcn.2012.16.26

Dotto, J. M., & Chacha, J. S. (2020). The potential of pumpkin seeds as a functional food ingredient: A review. Scientific African, 10, e00575. https://doi.org/10.1016/j.sciaf.2020.e00575

Dowidar, M., Ahmed, A., & Mohamed, H. (2020). The critical nutraceutical role of pumpkin seeds in human and animal health: An updated review. Zagazig Veterinary Journal, 48(2), 199-212. https://doi.org/10.21608/zvjz.2020.22530.1097

Eleiwa, N. Z., Bakr, R. O., & Mohamed, S. A. (2014). Phytochemical and pharmacological screening of seeds and fruits pulp of Cucurbita moschata Duchesne cultivated in Egypt. International Journal of Pharmacognosy and Phytochemistry, 29(1), 1226-1236.

Elinge, C. M., Muhammad, A., Atiku, F. A., Itodo, A. U., Peni, I. J., Sanni, O. M., & Mbongo, A. N. (2012). Proximate, mineral and anti-nutrient composition of pumpkin (Cucurbita pepo L) seeds extract. International Journal of plant research, 2(5), 146-150.

Gažová, A., Valášková, S., Žufková, V., Castejon, A. M., & Kyselovič, J. (2019). Clinical study of effectiveness and safety of CELcomplex® containing Cucurbita Pepo Seed extract and Flax and Casuarina on stress urinary incontinence in women. Journal of Traditional and Complementary Medicine, 9(2), 138-142. https://doi.org/10.1016/j.jtcme.2017.10.005

Hagos, M., Redi-Abshiro, M., Chandravanshi, B. S., & Yaya, E. E. (2022). Development of Analytical Methods for Determination of β‐Carotene in Pumpkin (Cucurbita maxima) Flesh, Peel, and Seed Powder Samples. International journal of analytical chemistry, 2022(1), 9363692. https://doi.org/10.1155/2022/9363692

Jayaprakasam, B., Seeram, N. P., & Nair, M. G. (2003). Anticancer and antiinflammatory activities of cucurbitacins from Cucurbita andreana. Cancer letters, 189(1), 11-16. https://doi.org/10.1016/s0304-3835(02)00497-4

Jiang, J., Loganathan, J., Eliaz, I., Terry, C., Sandusky, G. E., & Sliva, D. (2012). ProstaCaid™ inhibits tumor growth in a xenograft model of human prostate cancer. International journal of oncology, 40(5), 1339-1344. https://doi.org/10.3892/ijo.2012.1344

Karaye, I. U., Hayatu, M., Mustapha, Y., & Sani, L. A. (2021). Nutritional and anti-nutritional properties of the seeds of six selected Nigerian Cucurbit Germplasm. Journal of Plant Development, 28, 139-150. https://doi.org/10.47743/jpd.2021.28.1.878

Kumar, K., Mounika, S. J., Sudhakar, P., & Sandeep, B. V. (2016). Evaluation of biochemical and phytochemical parameters in germinating and nongerminating seeds of Cucurbita maxima. International Journal of Applied Science and Engineering Research, 5(4), 341-353. https://doi.org/10.6088/ijaser.05034

Kushawaha, D. K., Yadav, M., Chatterji, S., Srivastava, A. K., & Watal, G. (2016). α-amylase and α-glucosidase inhibitory activity assessment of Cucurbita maxima seeds—a LIBS based study. International Journal of Phytomedicine, 8(3), 312-318. https://doi.org/10.5138/09750185.1906

LaChance, L. R., & Ramsey, D. (2018). Antidepressant foods: An evidence-based nutrient profiling system for depression. World journal of psychiatry, 8(3), 97. https://doi.org/10.5498/wjp.v8.i3.97

Larner, J. (2002). D‐chiro‐inositol–its functional role in insulin action and its deficit in insulin resistance. Journal of Diabetes Research, 3(1), 47-60.

Lemus-Mondaca, R., Marin, J., Rivas, J., Sanhueza, L., Soto, Y., Vera, N., & Puente-Díaz, L. (2019). Semillas de calabaza (Cucurbita máxima). Una revisión de sus propiedades funcionales y sub-productos. Revista chilena de nutrición, 46(6), 783-791. https://doi.org/10.4067/S0717-75182019000600783

Lestari, B., & Meiyanto, E. (2018). A review: The emerging nutraceutical potential of pumpkin seeds. Indonesian Journal of Cancer Chemoprevention, 9(2), 92-101. https://doi/org/10.14499/indonesianjcanchemoprev9iss2pp92-101

Lestari, B., & Meiyanto, E. (2018). A review: The emerging nutraceutical potential of pumpkin seeds. Indonesian Journal of Cancer Chemoprevention, 9(2), 92-101.

Lum, H., & Roebuck, K. A. (2001). Oxidant stress and endothelial cell dysfunction. American Journal of Physiology-Cell Physiology, 280(4), C719-C741.

Makni, M., Fetoui, H., Gargouri, N. K., Garoui, E. M., & Zeghal, N. (2011). Antidiabetic effect of flax and pumpkin seed mixture powder: effect on hyperlipidemia and antioxidant status in alloxan diabetic rats. Journal of Diabetes and its Complications, 25(5), 339-345. https://doi.org/10.1016/j.jdiacomp.2010.09.001

Makni, M., Fetoui, H., Gargouri, N. K., Garoui, E. M., Jaber, H., Makni, J., ... & Zeghal, N. (2008). Hypolipidemic and hepatoprotective effects of flax and pumpkin seed mixture rich in ω-3 and ω-6 fatty acids in hypercholesterolemic rats. Food and Chemical Toxicology, 46(12), 3714-3720. https://doi.org/10.1016/j.fct.2008.09.057

Makni, M., Fetoui, H., Garoui, E. M., Gargouri, N. K., Jaber, H., Makni, J., & Zeghal, N. (2010). Hypolipidemic and hepatoprotective seeds mixture diet rich in ω-3 and ω-6 fatty acids. Food and Chemical Toxicology, 48(8-9), 2239-2246. https://doi.org/10.1016/j.fct.2010.05.055

Medjakovic, S., Hobiger, S., Ardjomand-Woelkart, K., Bucar, F., & Jungbauer, A. (2016). Pumpkin seed extract: Cell growth inhibition of hyperplastic and cancer cells, independent of steroid hormone receptors. Fitoterapia, 110, 150-156. , https://doi.org/10.1016/j. fitote.2016.03.010

Miteu, G., & Ezeh, B. (2022). Effects of roasting periods on the nutritive value of Telfaira occidentalis (fluted pumpkin) seeds. IPS Journal of Nutrition and Food Science, 1(1), 6-10.

Mohaammed, S. S., Paiko, Y. B., Mann, A., Ndamitso, M. M., Mathew, J. T., & Maaji, S. (2014). Proximate, mineral and anti-nutritional composition of Cucurbita maxima fruits parts. Nigerian Journal of Chemical Research, 19, 37-49.

Muchirah, P. N., Waihenya, R., Muya, S., Abubakar, L., Ozwara, H., & Makokha, A. (2018). Characterization and anti-oxidant activity of Cucurbita maxima Duchesne pulp and seed extracts. The journal of phytopharmacology, 7(2), 134-140.

Murevanhema, Y. Y., & Jideani, V. A. (2013). Potential of bambara groundnut (Vigna subterranea (L.) Verdc) milk as a probiotic beverage—a review. Critical reviews in food science and nutrition, 53(9), 954-967. https://doi.org/10.1080/10408398.2011.574803

Musaidah, M., Wahyu, A., Abdullah, A. Z., Syafar, M., Hadju, V., & Syam, A. (2021). The effect of pumpkin seeds biscuits and moringa extract supplementation on hemoglobin, ferritin, c-reactive protein, and birth outcome for pregnant women: A systematic review. Open Access Macedonian Journal of Medical Sciences, 9(F), 360-365. https://doi.org/10.3889/oamjms.2021.6903

Napolitano, M., Rivabene, R., Avella, M., Amicone, L., Tripodi, M., Botham, K. M., & Bravo, E. (2001). Oxidation affects the regulation of hepatic lipid synthesis by chylomicron remnants. Free Radical Biology and Medicine, 30(5), 506-515.

Nzotta, A. O., & Onabanjo, R. S. (2021). Evaluation of flaxseed, sesame and pumpkin seeds as an alternative source of functional feed ingredients. Nigerian Journal of Animal Science, 23(3), 116-125.

Parry, J. W., Cheng, Z., Moore, J., & Yu, L. L. (2008). Fatty acid composition, antioxidant properties, and antiproliferative capacity of selected cold-pressed seed flours. Journal of the American Oil Chemists' Society, 85, 457-464. https://doi.org/10.1007/s11746-008-1207-0

Patel, S. (2013). Pumpkin (Cucurbita sp.) seeds as nutraceutic: a review on status quo and scopes. Mediterranean Journal of Nutrition and Metabolism, 6(3), 183-189. https://doi.org/10.3233/s12349-013-0131-5

Perez Gutierrez, R. M. (2016). Review of Cucurbita pepo (pumpkin) its phytochemistry and pharmacology. Med chem, 6(1), 12-21.

Pinheiro, S., Silva, J., Mota, C., Vaz-Silva, J., Veloso, A., Pinto, V., & Sotiropoulos, I. (2016). Tau mislocation in glucocorticoid-triggered hippocampal pathology. Molecular neurobiology, 53, 4745-4753.

Ren, S., Ouyang, D. Y., Saltis, M., Xu, L. H., Zha, Q. B., Cai, J. Y., & He, X. H. (2012). Anti-proliferative effect of 23, 24-dihydrocucurbitacin F on human prostate cancer cells through induction of actin aggregation and cofilin-actin rod formation. Cancer chemotherapy and pharmacology, 70, 415-424. https://doi.org/10.1007/s00280-012-1921-z.

Richter, D., Abarzua, S., Chrobak, M., Vrekoussis, T., Weissenbacher, T., Kuhn, C., & Dian, D. (2013). Effects of phytoestrogen extracts isolated from pumpkin seeds on estradiol production and ER/PR expression in breast cancer and trophoblast tumor cells. Nutrition and Cancer, 65(5), 739-745. https://doi.org/10.1080/01635581.2013.797000

Ristic-Medic, D., Perunicic-Pekovic, G., Rasic-Milutinovic, Z., Takic, M., Popovic, T., Arsic, A., & Glibetic, M. (2014). Effects of dietary milled seed mixture on fatty acid status and inflammatory markers in patients on hemodialysis. The Scientific World Journal, 2014(1), 563576. https://doi/org/10.1155/2014/563576

Roy, S., & Datta, S. (2015). A comprehensive review on the versatile pumpkin seeds (Curcurbita maxima) as a valuable natural medicine. Int. J. Curr. Res, 7, 19355-19361.

Roy, S., Datta, S., 2015. Dakeng, S., Duangmano, S., Jiratchariyakul, W., U‐Pratya, Y., Bögler, O., & Patmasiriwat, P. (2012). Inhibition of Wnt signaling by cucurbitacin B in breast cancer cells: Reduction of Wnt‐associated proteins and reduced translocation of galectin‐3‐mediated β‐catenin to the nucleus. Journal of cellular biochemistry, 113(1), 49-60. https://doi.org/10.1002/jcb.23326.

Sardana, R. K., Chhikara, N., Tanwar, B., & Panghal, A. (2018). Dietary impact on esophageal cancer in humans: a review. Food & function, 9(4), 1967-1977. https://doi.org/10.1039/C7FO01908D

Shalan, N. A. A. M., Rahim, N. A., & Saad, N. (2020). The effects of Black Mulberry fruit extract, sunflower seed, and pumpkin seed with exercise on memory function and neural activation biomarkers among healthy young adults. Current Research in Nutrition and Food Science Journal, 8(1), 281-290.

Sharma, A., Sharma, A. K., Chand, T., Khardiya, M., & Yadav, K. C. (2013). Antidiabetic and antihyperlipidemic activity of Cucurbita maxima Duchense (pumpkin) seeds on streptozotocin induced diabetic rats. Journal of Pharmacognosy and Phytochemistry, 1(6), 108-116.

Singh, A., & Kumar, V. (2022). Nutritional, phytochemical, and antimicrobial attributes of seeds and kernels of different pumpkin cultivars. Food Frontiers, 3(1), 182-193. https://doi.org/10.1002/fft2.117

Singh, B., Singh, J. P., Kaur, A., & Singh, N. (2017). Phenolic composition and antioxidant potential of grain legume seeds: A review. Food research international, 101, 1-16. https://doi.org/10.1016/j.foodres.2017.09.026

Syed, Q. A., Akram, M., & Shukat, R. (2019). Nutritional and therapeutic importance of the pumpkin seeds. Seed, 21(2), 15798-15803. https://doi.org/10.26717/BJSTR.2019.21.003586

Tucker, J. M., & Townsend, D. M. (2005). Alpha-tocopherol: roles in prevention and therapy of human disease. Biomedicine & pharmacotherapy, 59(7), 380-387. https://doi.org/10.1016/j.biopha.2005.06.005

Williams, E. T., & Abubakar, M. (2020). Proximate, elemental and anti-nutrients composition of pumpkin seed (cucurbita maxima duch ex lam) obtained from Duvu Mubi South Adamawa State, Nigeria. International Journal of Nutrition and Food Sciences, 9(4), 112-117. https://doi.org/10.11648/j.ijnfs.20200904.13

Yasir, M., Sultana, B., Nigam, P. S., & Owusu-Apenten, R. (2016). Antioxidant and genoprotective activity of selected cucurbitaceae seed extracts and LC–ESIMS/MS identification of phenolic components. Food chemistry, 199, 307-313. https://doi.org/10.1016/j.foodchem.2015.11.138.

Yasir, M., Sultana, B., Nigam, P. S., & Owusu-Apenten, R. (2016). Antioxidant and genoprotective activity of selected cucurbitaceae seed extracts and LC–ESIMS/MS identification of phenolic components. Food chemistry, 199, 307-313.

Yoshinari, O., Sato, H., & Igarashi, K. (2009). Anti-diabetic effects of pumpkin and its components, trigonelline and nicotinic acid, on Goto-Kakizaki rats. Bioscience, biotechnology, and biochemistry, 73(5), 1033-1041.

Zhang, B., Zhang, Y., Wu, W., Xu, T., Yin, Y., Zhang, J., & Li, W. (2017). Chronic glucocorticoid exposure activates BK-NLRP1 signal involving in hippocampal neuron damage. Journal of Neuroinflammation, 14, 1-13.

Downloads

Published

2024-09-07

How to Cite

Silky, Bisla, G., & Srishti. (2024). Therapeutic and Pharmacological Properties of Pumpkin Seeds: A Comprehensive Review. Journal for Research in Applied Sciences and Biotechnology, 3(4), 117–125. https://doi.org/10.55544/jrasb.3.4.14