Breakthroughs in Perovskite Solar Cells: Advancing Efficiency and Stability for Next-Generation Photovoltaics

Authors

  • Anjna Chetan Assistant Professor, Department of Physics, D.J. College Baraut Baghpat, Uttar Pradesh - 250611, INDIA.

DOI:

https://doi.org/10.55544/jrasb.1.3.37

Keywords:

Perovskite Solar Cells (PSCs), Photovoltaic Efficiency, Material Stability

Abstract

Perovskite solar cells (PSCs) have emerged as a revolutionary technology in photovoltaics, demonstrating rapid progress and potential for transforming solar energy generation. This paper delves into the latest breakthroughs in PSCs, focusing on enhancing efficiency and stability for next-generation photovoltaics. We trace the evolution of PSCs from their inception in 2009, where initial power conversion efficiencies (PCEs) were 3.8%, to recent advancements surpassing 25%. Key advantages of PSCs, such as low-temperature solution-based fabrication and the potential for flexible, lightweight solar panels, are discussed.

Our research is structured around five main objectives: first, investigating advances in perovskite materials, particularly mixed cations and anions that enhance efficiency and stability. Second, exploring strategies to boost efficiency through advanced light management, optimized charge transport layers, and improved interface engineering. Third, addressing stability by developing robust encapsulation techniques and moisture-resistant materials, alongside optimizing thermal and photostability. Fourth, assessing innovative device architectures like tandem solar cells and flexible, lightweight designs for diverse applications. Fifth, examining the scalability of PSC production, including manufacturing challenges, cost analysis, and market potential.

By addressing these objectives, the paper provides a comprehensive overview of current PSC technology and identifies key areas for future development, aiming to advance PSCs as a viable, sustainable solution for global energy needs.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Atwater, H. A., & Polman, A. (2010). Plasmonics for improved photovoltaic devices. Nature Materials, 9(3), 205-213.

Green, M. A., Ho-Baillie, A., & Snaith, H. J. (2014). The emergence of perovskite solar cells. Nature Photonics, 8(7), 506-514.

Kaltenbrunner, M., Adam, G., Głowacki, E. D., Drack, M., Schwödiauer, R., Bauer, S., & Sariciftci, N. S. (2015). Flexible high power-per-weight perovskite solar cells with chromium oxide–metal contacts for improved stability in air. Nature Materials, 14(10), 1032-1039.

Kim, H. S., Im, S. H., & Park, N. G. (2014). Organolead halide perovskite: new horizons in solar cell research. The Journal of Physical Chemistry C, 118(11), 5615-5625.

Kojima, A., Teshima, K., Shirai, Y., & Miyasaka, T. (2009). Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 131(17), 6050-6051.

Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N., & Snaith, H. J. (2012). Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 338(6107), 643-647.

McMeekin, D. P., Sadoughi, G., Rehman, W., Eperon, G. E., Saliba, M., Hörantner, M. T., ... & Snaith, H. J. (2016). A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science, 351(6269), 151-155.

Niu, G., Guo, X., & Wang, L. (2015). Review of recent progress in chemical stability of perovskite solar cells. Journal of Materials Chemistry A, 3(17), 8970-8980.

Noel, N. K., Stranks, S. D., Abate, A., Wehrenfennig, C., Guarnera, S., Haghighirad, A. A., ... & Snaith, H. J. (2014). Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy & Environmental Science, 7(9), 3061-3068.

NREL (2020). Best Research-Cell Efficiency Chart. Retrieved from https://www.nrel.gov/pv/cell-efficiency.html

Park, N. G. (2015). Perovskite solar cells: an emerging photovoltaic technology. Materials Today, 18(2), 65-72.

Saliba, M., Matsui, T., Seo, J. Y., Domanski, K., Correa Baena, J. P., Nazeeruddin, M. K., ... & Grätzel, M. (2016). Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy & Environmental Science, 9(6), 1989-1997.

Zhou, H., Chen, Q., Li, G., Luo, S., Song, T. B., Duan, H. S., ... & Yang, Y. (2014). Interface engineering of highly efficient perovskite solar cells. Science, 345(6196), 542-546.

Atwater, H. A., & Polman, A. (2010). Plasmonics for improved photovoltaic devices. Nature Materials, 9(3), 205-213.

Bush, K. A., Palmstrom, A. F., Yu, Z. J., Boccard, M., Cheacharoen, R., Mailoa, J. P., ... & Holman, Z. C. (2017). 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nature Energy, 2(4), 17009.

Chen, Q., Zhou, H., Song, T. B., Luo, S., Hong, Z., Duan, H. S., ... & Yang, Y. (2016). Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells. Nano Letters, 14(7), 4158-4163.

Green, M. A., Ho-Baillie, A., & Snaith, H. J. (2014). The emergence of perovskite solar cells. Nature Photonics, 8(7), 506-514.

Jeon, N. J., Noh, J. H., Kim, Y. C., Yang, W. S., Ryu, S., Seo, J., & Seok, S. I. (2015). Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nature Materials, 13(9), 897-903.

Jung, E. H., Jeon, N. J., Park, E. Y., Moon, C. S., Shin, T. J., Yang, T. Y., ... & Seok, S. I. (2019). Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature, 567(7749), 511-515.

Kaltenbrunner, M., Adam, G., Głowacki, E. D., Drack, M., Schwödiauer, R., Bauer, S., ... & Sariciftci, N. S. (2015). Flexible high power-per-weight perovskite solar cells with chromium oxide–metal contacts for improved stability in air. Nature Materials, 14(10), 1032-1039.

Kim, H. S., Im, S. H., & Park, N. G. (2014). Organolead halide perovskite: new horizons in solar cell research. The Journal of Physical Chemistry C, 118(11), 5615-5625.

Li, X., Tschumi, M., Han, H., Babkair, S. S., Alzubaydi, R. A., Ansari, A. A., ... & Wang, L. (2019). Review of scalable fabrication techniques for perovskite solar cells. Energy & Environmental Science, 12(6), 1536-1555.

McMeekin, D. P., Sadoughi, G., Rehman, W., Eperon, G. E., Saliba, M., Hörantner, M. T., ... & Snaith, H. J. (2016). A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science, 351(6269), 151-155.

Meng, L., You, J., Guo, T. F., & Yang, Y. (2014). Recent advances in the inverted planar structure of perovskite solar cells. Accounts of Chemical Research, 49(1), 155-165.

Niu, G., Guo, X., & Wang, L. (2015). Review of recent progress in chemical stability of perovskite solar cells. Journal of Materials Chemistry A, 3(17), 8970-8980.

NREL (2020). Best Research-Cell Efficiency Chart. Retrieved from https://www.nrel.gov/pv/cell-efficiency.html

Park, N. G. (2015). Perovskite solar cells: an emerging photovoltaic technology. Materials Today, 18(2), 65-72.

Saliba, M., Matsui, T., Seo, J. Y., Domanski, K., Correa Baena, J. P., Nazeeruddin, M. K., ... & Grätzel, M. (2016). Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy & Environmental Science, 9(6), 1989-1997.

Sinha, S., Agarwal, A., & Mohapatra, Y. N. (2019). Economic viability and technological advancements in perovskite solar cells. Materials Today: Proceedings, 18, 5011-5020.

Tress, W., Yavari, M., Domanski, K., Yadav, P., Niesen, B., Correa Baena, J. P., ... & Grätzel, M. (2018). Interpretation and evolution of open-circuit voltage, recombination, and device capacitance in perovskite solar cells. Energy & Environmental Science, 11(1), 151-165.

Wang, Y., Dar, M. I., Ono, L. K., Zhang, T., Kan, M., Li, Y., ... & Gao, X. (2016). Thermodynamically stabilized β-CsPbI3–based perovskite solar cells with efficiencies >18%. Science Advances, 3(7), e1602165.

Yang, W. S., Noh, J. H., Jeon, N. J., Kim, Y. C., Ryu, S., Seo, J., & Seok, S. I. (2015). High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 348(6240), 1234-1237.

Zhao, Y., Zhu, K. (2016). Organic–inorganic hybrid lead halide perovskites for energy applications. Chemical Society Reviews, 45(20), 6558-6576.

Zhu, X., Lin, F., Hao, J., & Bao, H. (2016). Photonic crystals for light management in photovoltaic devices. Journal of Materials Chemistry C, 4(27), 6736-6745.

Downloads

Published

2022-08-28

How to Cite

Chetan, A. (2022). Breakthroughs in Perovskite Solar Cells: Advancing Efficiency and Stability for Next-Generation Photovoltaics. Journal for Research in Applied Sciences and Biotechnology, 1(3), 278–285. https://doi.org/10.55544/jrasb.1.3.37