New Insights on N-Methyl-D-Aspartate (NMDA) Receptor Under Combinatorial Molecular Docking and MD Simulation Studies Using Natural Bioactive Compounds Against Neurodegenerative Diseases

Authors

  • Ayushi Poddar Department of Tech. Biosciences, Digianalix, South Samaj Street, Tharpakhna, Ranchi, Jharkhand, INDIA. | Department of Biotechnology, Gossner College, Ranchi, Jharkhand, INDIA.
  • Anupriya Department of Tech. Biosciences, Digianalix, South Samaj Street, Tharpakhna, Ranchi, Jharkhand, INDIA. | Department of Biotechnology, Gossner College, Ranchi, Jharkhand, INDIA.
  • Priyangulta Beck Department of Tech. Biosciences, Digianalix, South Samaj Street, Tharpakhna, Ranchi, Jharkhand, INDIA.
  • Harsimran Kaur Hora Department of Tech. Biosciences, Digianalix, South Samaj Street, Tharpakhna, Ranchi, Jharkhand, INDIA.
  • Nisha Rani Soreng Department of Biotechnology, Gossner College, Ranchi, Jharkhand, INDIA.
  • Swati Shalika Department of Biotechnology, Marwari College, Ranchi, Jharkhand, INDIA.
  • Mukesh Nitin Department of Tech. Biosciences, Digianalix, South Samaj Street, Tharpakhna, Ranchi, Jharkhand, INDIA.

DOI:

https://doi.org/10.55544/jrasb.3.2.34

Keywords:

neurodegenerative diseases, NMDA receptor, natural bioactive compounds, in silico docking, molecular dynamics simulations, beta-carotene, catechins

Abstract

Neurodegenerative diseases pose a significant challenge, and novel therapeutic strategies are urgently needed. N-methyl-D-aspartate (NMDA) receptor is reported to play a critical role in the central nervous system and has emerged as a potential target for drug discovery. This study explored the potential scope of natural bioactive compounds as ligands for the NMDA receptor using current advances of docking studies with molecular dynamic (MD) simulations. An extensive virtual screening of 500 natural compounds were executed based on wide scientific literature and bibliography search. Docking simulations identified promising candidates with favorable binding affinities, with the top compounds - DL-Alanosine, and Zeinoxanthin (PubChem CIDs 153353 and 5281234) exhibiting exceptionally high docking scores of -6.6 and -6.4, against NMDA respectively. Further, MD simulations suggested the stability of the top-scoring compounds in complex with the NMDA receptor. These findings will provide a new insights to researchers and scientists on proceeding with new alternatives on the investigation of natural bioactive compounds as therapeutic lead candidates for targeting various receptors like NMDA in neurodegenerative diseases. However, in vitro and in vivo studies are warranted to validate these results and elucidate the underlying mechanisms of action.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Plun-Favreau, H., Lewis, P.A., Hardy, J., Martins, L. M., Wood, N., W. (2010).Cancer and neurodegeneration: between the devil and the deep blue sea. PLoS genetics. 6(12): e1001257. doi:10.1371/journal.pgen.1001257.

Sarica, FeyziBirol, ed. (2023). Central Nervous System Tumors: Primary and Secondary. BoD–Books on Demand.

Emoto, M., C., Sato-Akaba, H., Hamaue, N., Kawanishi, k., Koshino, H., Shimohama, S., Fuji, H., G. (2021). Early detection of redox imbalance in the APPswe/PS1dE9 mouse model of Alzheimer’s disease by in vivo electron paramagnetic resonance imaging. Free Radical Biology and Medicine 172: 9-18. Doi: https://doi.org/10.1016/j.freeradbiomed.2021.05.035.

Ganguli, Mary. (2015). Cancer and Dementia: It’s Complicated. Alzheimer Disease & Associated Disorders. 29(2):177-182. Doi: 10.1097/WAD.0000000000000086.

Majd, Shohreh, John Power, and ZohrehMajd. (2019). Alzheimer’s disease and cancer: when two monsters cannot be together. Frontiers in neuroscience 13;155. Doi: https://doi.org/10.3389/fnins.2019.00155.

Avila, A., H., Weixelbaum, J., H., Goggans, K., R., Compton, W., M. (2023). The national institute on drug abuse diversity scholars network: success for a diverse addiction science workforce. Neuropsychopharmacol.48, 1963–1967 doi: https://doi.org/10.1038/s41386-023-01733-x.

Biesalski, Hans-Konrad, Dragsted, L., O., Elmadf, I., Grossklaus, R., Müller, M., Schrenk, D., Walter, P., Weber, P. (2009). Bioactive compounds: Definition and assessment of activity. Nutrition. 25(11-12): 1202-1205. Doi: https://doi.org/10.1016/j.nut.2009.04.023.

Pai, S., Hebbar, A. & Selvaraj, S. (2022). A critical look at challenges and future scopes of bioactive compounds and their incorporations in the food, energy, and pharmaceutical sector. Environmental Science and Pollution Research. 29: 35518–35541. Doi: https://doi.org/10.1007/s11356-022-19423-4.

Chhikara, N., Kushwaha, K., Sharma, P., Gat, Y., Panghal, A. (2019). Bioactive compounds of beetroot and utilization in food processing industry: A critical review. Food chemistry. 272: 192-200. Doi: https://doi.org/10.1016/j.foodchem.2018.08.022.

Câmara, J., S., Albuquerque, B., R., Aguiar, J., Corrêa, R., C., G., Gonçalves, J., L., Granato, D., Pereira, J., A., M., Barros, L., Ferreira, I., C., F., R. (2021). Food Bioactive Compounds and Emerging Techniques for Their Extraction: Polyphenols as a Case Study. Foods. 10(37). Doi: https://doi.org/10.3390/foods10010037.

https://www.ncbi.nlm.nih.gov/

https://pubchem.ncbi.nlm.nih.gov/

Sliwoski, G., Kothiwale, S., Meiler, J., Lowe, Jr., E., W. (2014). Computational methods in drug discovery. Pharmacological reviews. 66(1): 334-395. Doi: https://doi.org/10.1124/pr.112.007336.

Skariyachan, S., S. Garka, and A. M. Grumezescu. (2018). Fullerens, Graphenes and Nanotubes.Doi: https://doi.org/10.1016/B978-0-12-813691-1.00001-4.

Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F.T., de Beer, T.A.P., Rempfer, C., Bordoli, L., Lepore, R., Schwede, T. (2018). SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Research. 46: W296-W303. Doi: https://doi.org/10.1093/nar/gky427.

The UniProt Consortium. (2023). UniProt: the Universal Protein Knowledgebase in 2023. Nucleic Acids Research, 51(D1): D523–D531. Doi: https://doi.org/10.1093/nar/gkac1052.

Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M., R., Appel, R., D., Bairoch, A.(2005). Protein Identification and Analysis Tools on the Expasy Server; (In)John M. Walker (ed): The Proteomics Protocols Handbook, Humana Press .pp. 571-607.

https://harrier.nagahama-i-bio.ac.jp/sosui/mobile/

C. Geourjon, G. Deléage. (1995). SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments, Bioinformatics, 11(6), 681–684. DOI: https://doi.org/10.1093/bioinformatics/11.6.681.

Sander, T., Freyss, J., Korff, M., V., Reich, J., R., Rufener, C. (2009). OSIRIS, an entirely in-house developed drug discovery informatics system. Journal of chemical information and modeling, 49(2), 232-46. DOI:10.1021/ci800305f.

https://niper.gov.in/pi_dev_tools/DruLiToWeb/DruLiTo_index.html

Pettersen, E., F., Goddard, T., D., Huang, C., C., Couch, g., S., Greenblatt, D., M., Meng, E., C., Ferrin, T., E. (2004). UCSF Chimera--a visualization system for exploratory research and analysis. Journal of computational chemistry, 25(13) 1605-12. DOI:10.1002/jcc.20084.

Guex, N. and Peitsch, M.C. (1997) SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling. Electrophoresis 18, 2714-2723.

Hanwell, M., D., Curtis, D., E., Lonie, D., C., Vandermeersch, T., Zurek, E., & Hutchison, G., R. (2012). Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics. 4:17. Doi: https://doi.org/10.1186/1758-2946-4-17.

Binkowski, T., A., Naghibzadeh, S., & Liang, J. (2003). CASTp: Computed Atlas of Surface Topography of proteins. Nucleic acids research. 31(13), 3352-5. DOI:10.1093/nar/gkg512.

O'Boyle, N., M., Banck, M., James, C., A., Morley, C., Vandermeersch, T., Hutchison, G., R. (2011). Open Babel: An open chemical toolbox. Journal of Cheminformatics. 3(33). DOI: https://doi.org/10.1186/1758-2946-3-33.

https://www.3ds.com/products/biovia/discovery-studio

López-Blanco, José Ramón, Aliaga, J., I., Quintana-Ortí, E., S., Chaćon, P. (2014). iMODS: internal coordinates normal mode analysis server. Nucleic acids research. 42. DOI:10.1093/nar/gku339.

Jewett, B., E., & Thapa, B. (2022). Physiology, NMDA receptor. StatPearls [Internet]. StatPearls Publishing.

Citri, A., & Malenka, R., C. (2008). Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology. 33(1): 18-41. Doi: https://doi.org/10.1038/sj.npp.1301559.

Eberhardt, J., Santos-Martins, D., Tillack, A.F., Forli, S. (2021). AutoDockVina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. Journal of Chemical Information and Modeling. 61(8):3891-3898. Doi: 10.1021/acs.jcim.1c00203.

Kalia, L., V., Kalia, S., K., & Salter, M., W. (2008). NMDA receptors in clinical neurology: excitatory times ahead. The Lancet Neurology 7(8): 742-755. Doi: 10.1016/S1474-4422(08)70165-0.

Tönnies, E., Trushina, E. (2017). Oxidative stress, synaptic dysfunction, and Alzheimer’s disease. Journal of Alzheimer's Disease. 57(4):1105-1121. Doi: 10.3233/JAD-161088.

Rzajew, J., Radzik, T., & Rebas, E. (2020). Calcium-involved action of phytochemicals: carotenoids and monoterpenes in the brain. International journal of molecular sciences 21(4): 1428. Doi: 10.3390/ijms21041428.

Zündorf, G., & Reiser, G. (2011). Calcium dysregulation and homeostasis of neural calcium in the molecular mechanisms of neurodegenerative diseases provide multiple targets for neuroprotection. Antioxidants & redox signaling 14(7): 1275-1288. Doi: 10.1089/ars.2010.3359.

Pchitskaya, E., Popugaeva, E., & Bezprozvanny, I. (2018). Calcium signaling and molecular mechanisms underlying neurodegenerative diseases. Cell calcium. 70: 87-94. Doi: 10.1016/j.ceca.2017.06.008.

Conway, Myra E. (2020) Alzheimer’s disease: targeting the glutamatergic system. Biogerontology. 21(3): 257-274. Doi: 10.1007/s10522-020-09860-4.

Schneider, J., A., Arvanitakis Z., Leurgans, S., E., Bennett, D., A. (2009). The neuropathology of probable Alzheimer disease and mild cognitive impairment. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society. 66(2): 200-208. Doi: 10.1002/ana.21706.

Shaw, D., Graeme, l., Pierre, D., Elizabeth, W. Kelvin, C. (2012). Pharmacovigilance of herbal medicine. Journal of ethnopharmacology. 140(3): 513-518. Doi: https://doi.org/10.1016/j.jep.2012.01.051.

Downloads

Published

2024-05-14

How to Cite

Poddar, A., Anupriya, Priyangulta Beck, Hora, H. K., Soreng, N. R., Shalika, S., & Nitin, M. (2024). New Insights on N-Methyl-D-Aspartate (NMDA) Receptor Under Combinatorial Molecular Docking and MD Simulation Studies Using Natural Bioactive Compounds Against Neurodegenerative Diseases. Journal for Research in Applied Sciences and Biotechnology, 3(2), 185–192. https://doi.org/10.55544/jrasb.3.2.34

Issue

Section

Articles