Microorganisms’ Effects and Mechanisms in Ocular Infections: A Systematic Review

Authors

  • Shivendra Verma Department of Microbiology, Sarvepalli Radhakrishnan University, Bhopal, INDIA.
  • Shalini Singh Department of Microbiology, Sarvepalli Radhakrishnan University, Bhopal, INDIA.

DOI:

https://doi.org/10.55544/jrasb.1.4.3

Keywords:

Ocular Infection, Ocular microbiome, Bacterial infectious diseases, Molecular diagnosis

Abstract

In the world, microorganisms are the main cause of eye illnesses. Common bacterial infections of the eye, if untreated, can damage the eye's structures and lead to blindness and other visual impairments. The eye may get infected from the outside or as a result of bloodstream-borne germs invading the eye. Infectious bacteria can cause eye infections. Blepharitis, conjunctivitis, Listeriosis, keratitis, dacryocystitis, etc. are some of the frequent eye illnesses brought on by bacterial and fungal pathogens. The information on the variety of ocular surface microorganisms has been significantly increased by the series of genome-based methods through 16S rRNA gene-based identification.

According to this research, a sufficient number of bacteria have a substantial part in the pathophysiology of eye illnesses, even though certain bacteria contribute to normal ocular processes. As a result, those with good vision can shed light on the intricacy of the ocular microflora and learn more about some visual requirements in addition to their vital contribution to the regular operation of the eye. Under these conditions, it is crucial to establish a quick, dependable, and affordable procedure that will eventually become a standard diagnostic process. In this literature review, many databases have searched, and the review has been methodically conducted to produce specific results for the hard eye infection disorders.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Galvis V, Tello A, Guerra A, Acuna MR, Villarreal D. Antibiotic susceptibility patterns of bacteria isolated from keratitis and intraocular infections at Fundación Oftalmológica de Santander (FOSCAL), Floridablanca, Colombia. Biomedica. 2014;34(1):23–33.

Iwalokun A, Oluwadun A, Akinsinde A. Niemogha and Nwaokorie O. Bacteriologic and plasmid analysis of etiologic agents of conjunctivitis in Lagos, Nigeria. J Ophthal Inflamm Infect. 2011;1:95–103.

Choudhury R, Panda S, Sharma S and Sidh V. Staphylococcal infection, antibiotic resistance and therapeutics, antibiotic resistant bacteria - a continuous challenge in the new millennium, Dr. Marina Pana (Ed.) 2012, ISBN: 978-953-51-0472-8.

Vaughan D, Asbury T and Riodan P. General Ophthalmology, Lange Medical publication, 15th ed. 1996; 96-67

Al-Najjar, M. A. A., Altah, M., Aljakhim, D. (2019). An Overview of Ocular Microbiology: Ocular Microbiota, the Effect of Contact Lenses and Ocular Disease. Arch Phar & Pharmacol Res, 1 (5): 2019. APPR. MS. ID. 000522. DOI: 10.33552/APPR.2019.01.000522

Callegan, M. C., Engelbert, M., Parke II, D. W., Jett, B. D., Gilmore, M. (2002). Bacterial Endophthalmitis: Epidemiology, Therapeutics, and Bacterium-Host Interactions. Clinical Microbiology Reviews, 15 (1): 111–124. DOI: 10.1128/CMR.15.1.111-124.2002.

Luma Abdullatef S.N., & Firas M.B. Al-Khashab. (2022). Therapeutic Comparison Between Alcoholic and Aqueous Plant Extract of Tannins with Metronidazole in Experimentally Infected Laboratory Mice Cryptosporidium parvum Oocysts. Journal for Research in Applied Sciences and Biotechnology, 1(3), 131–137. https://doi.org/10.55544/jrasb.1.3.18

Astley, R., Miller, F. C., Mursalin, H., Coburn, P. S., Callegan, M. C. (2019). An Eye on Staphylococcus aureus Toxins: Roles in Ocular Damage and Inflammation. Toxins (Basel), 11 (6): 356. doi: 10.3390/toxins11060356.

Krishna, S., Miller, L. S. (2012). Host-pathogen Interactions Between the Skin and Staphylococcus Aureus. Curr Opin Microbiol, 15 (1): 28–35. doi: 10.1016/j.mib.2011.11.003.

Otto, M. (2014). Staphylococcus Aureus Toxins. Curr Opin Microbiol, 17: 32-37. doi: 10.1016/j.mib.2013.11.004.

Miles, G., Movileanu, L., Bayley, H. (2002). Subunit composition of a bicomponent toxin: staphylococcal leukocidin forms an octameric transmembrane pore. Protein science: a publication of the Protein Society, 11 (4), 894–902. https://doi.org/10.1110/ps.4360102.

Kobayashi, S. D., DeLeo, F. R. (2013). Staphylococcus aureus protein A promotes immune suppression. mBio, 4 (5): e00764-13. doi: 10.1128/mBio.00764-13.

Shah Hemat, M. Q. ., Danish, R. U. ., Raoufi, S. A. ., & Gulsharif, S. . (2022). Descriptive Study of Inguinal Hernia in the Post Graduated Hospital Khost. Journal for Research in Applied Sciences and Biotechnology, 1(3), 249–253. https://doi.org/10.55544/jrasb.1.3.32

Kochan, T., Singla, A., Tosi, J., Kumar, A. (2012). Toll-like receptor 2 ligand pretreatment attenuates retinal microglial inflammatory response but enhances phagocytic activity toward Staphylococcus aureus. Infect Immun, 80: 2076–2088. [PubMed: 22431652]

Teweldemedhin, M., Gebreyesus, H., Atsbaha, A. H., Asgedom, S. W., Saravanan, M. (2017). Bacterial profile of ocular infections: a systematic review. BMC ophthalmology, 17 (1): 212. https://doi.org/10.1186/s12886-017-0612-2.

Benton, A. H., Marquart, M. E. (2018). The Role of Pneumococcal Virulence Factors in Ocular Infectious Diseases. Interdisciplinary perspectives on infectious diseases, https://doi.org/10.1155/2018/2525173.

Bagnoli, F., Moschioni, M., Donati, C., Dimitrovska, V., Ferlenghi,. I, Facciotti, C., Muzzi, A., Giusti, F., Emolo, C., Sinisi, A., Hilleringmann, M., Pansegrau, W., Censini, S., Rappuoli, R., Covacci, A., Masignani, V., Barocchi, M. A. (2008). A second pilus type in Streptococcus pneumoniae is prevalent in emerging serotypes and mediates adhesion to host cells. J Bacteriol, 190: 5480–5492. [PubMed: 18515415].

Barocchi, M. A., Ries, J., Zogaj, X., Hemsley, C., Albiger, B., Kanth, A., Dahlberg, S., Fernebro, J., Moschioni, M., Masignani, V., Hultenby, K., Taddei, A. R., Beiter, K., Wartha, F., von Euler, A., Covacci, A., Holden, D. W., Normark, S., Rappuoli, R., Henriques-Normark, B. (2006). A pneumococcal pilus influences virulence and host inflammatory responses. Proc Natl Acad Sci USA, 103: 2857–2862. [PubMed: 16481624]).

Nelson, A. L., Ries, J., Bagnoli, F., Dahlberg, S., Fälker, S., Rounioja, S., Tschöp, J., Morfeldt, E., Ferlenghi, I., Hilleringmann, M., Holden, D. W., Rappuoli, R., Normark, S., Barocchi, M. A., Henriques-Normark, B. (2007). RrgA is a pilus-associated adhesin in Streptococcus pneumoniae. Mol Microbiol., 66: 329– 340. [PubMed: 17850254]).

Luma Abdullatef S.N., & Firas M.B. Al-Khashab. (2022). Evaluation of the Therapeutic Efficacy of Alcoholic Extract of Tannins (Before and After Acidosis) on Laboratory Mice Experimentally Infected with the Parasite Cryptosporidium parvum. Journal for Research in Applied Sciences and Biotechnology, 1(3), 138–145. https://doi.org/10.55544/jrasb.1.3.19

Hynes, W., Sloan, M. (2016). Secreted Extracellular Virulence Factors. In: Ferretti JJ, Stevens DL, Fischetti VA, editors. Streptococcus pyogenes: Basic Biology to Clinical Manifestations [Internet]. Oklahoma City (OK): University of Oklahoma Health Sciences Center; 2016-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK333411/.

Fischetti, V. A. (2016). M Protein and Other Surface Proteins on Streptococci. In: Ferretti JJ, Stevens DL, Fischetti VA, editors. Streptococcus pyogenes: Basic Biology to Clinical Manifestations [Internet]. Oklahoma City (OK): University of Oklahoma Health Sciences Center; 2016-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK333431/.

Ajay Kumar, Soma Chowdhury, Reshmi Mukherjee, Angana Naskar, Tushar Singhal, Devinder Kumar, Anurag Chourasia, & Vikrant Kumar. (2022). Evaluation of Antimicrobial, Anti-Inflammatory and Wound Healing Potentiality of Various Indian Small Herbs: A Meta Analysis. Journal for Research in Applied Sciences and Biotechnology, 1(3), 21–32. https://doi.org/10.55544/jrasb.1.3.4

Lancefield, R. C. (1959). Persistence of type-specific antibodies in man following infection with group A streptococci. The Journal of Experimental Medicine, 110 (2): 271–292.

Lancefield, R. C. (1962). Current knowledge of the type-specific M antigens of group A streptococci. The Journal of Immunology, 89 (3): 307–313.

Eguchi, H. (2013). Open access peer-reviewed chapter. Ocular Infections Caused by Corynebacterium Species. DOI: 10.5772/56214.

Callegan, M. C., Parkunan, S. M., Blake Randall, C, Coburn, P. S., Miller, F. C., LaGrow, A. L., Astley, R. A., Land, C., Oh, S. Y., Schneewind, O. (2017). The Role of Pili in Bacillus cereus Intraocular Infection. Exp Eye Res., 159: 69–76. doi: 10.1016/j.exer.2017.03.007.

Ton-That, H., Schneewind, O. (2004). Assembly of pili in Gram-positive bacteria. Trends Microbiol., 12: 228–234. [PubMed: 15120142].

Costumbrado, J., Ng, D. K., Ghassemzadeh, S. (2020). Gonococcal Conjunctivitis. In: StatPearls. Treasure Island (FL): StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK459289/.

Acharya, T. (2020). Virulence Factors of Neisseria gonorrhoeae (gonococcus) and their roles, https://microbeonline.com/virulence-factors-of-neisseria-gonorrhoeae/

Richard Owusu Nyarko, R. Roopini, Velicharla Raviteja, Chinaza Godswill Awuchi, Roshan Kumar, Erwin Martinez Faller, Elrey Librea Navarro, Edward Boateng, Ivan Kahwa, Paul Owusu Boateng, Christian Asum, & Purabi Saha. (2022). Novel Sars-CoV-2 Variants & Therapeutic Effects. Journal for Research in Applied Sciences and Biotechnology, 1(2), 25–34. https://doi.org/10.55544/jrasb.1.2.3

Alarcon, I., Evans, D. J., Fleiszig, S. M. (2009). The role of twitching motility in Pseudomonas aeruginosa exit from and translocation of corneal epithelial cells. Invest Ophthalmol Vis Sci., 50: 2237–44. [PubMed: 19136693]

Ubani, Udo Ahanna. Common bacterial isolates from infected eye. J Niger Optom Assoc. 2009;15:40-7.

M. Teweldemedhin, H. Gebreyesus, A.H. Atsbaha, S.W. Asgedom, M. Saravanan, Bacterial profile of ocular infections: a systematic review, BMC Ophthalmol. 17 (2017) 212.

N. Perween, D. Bisht, P. Aggarwal, Bacterial conjunctivitis: microbiological profile, antimicrobial susceptibility patterns and recommendations for treatment, J. Commun. Disord. 48 (2016) 1.

P. Murray, A. Nesdale, M. Balm, A rare case of bacterial conjunctivitis: the importance of pre-antibiotic swabs for microbiology, N. Z.Med. J. 129 (2016) 131.

S. Belga, J. Gratrix, P. Smyczek, et al., Gonococcal conjunctivitis in adults: case report and retrospective review of cases in alberta, Canada, 2000–2016, Sex. Transm. Dis. 46 (2019) 47–51.

Naghma Hassan, & Muhammad Shahin Siddique. (2022). Wheat Grass (Triticum aestivum L.) Benefits Health in a Pandemic Scenario. Journal for Research in Applied Sciences and Biotechnology, 1(1), 24–29. https://doi.org/10.55544/jrasb.1.1.5

N. Anuar, N.S. Idris, Gonococcal conjunctivitis: a case report, Malays. Fam. Physician 13 (2018) 27.

J. Costumbrado, DK. Ng, S. Ghassemzadeh, Gonococcal Conjunctivitis, StatPearls [Internet], 2020 (last updated).

A. Zikic, H. Schünemann, T. Wi, O. Lincetto, N. Broutet, N. Santesso, Treatment of neonatal chlamydial conjunctivitis: a systematic review and meta-analysis, J. Pediatr. Infect. Dis. Soc. 7 (2018) e107–e115.

J.P. Whitcher, M. Srinivasan, M.P. Upadhyay, Corneal blindness: a global perspective, Bull. World Health Organ. 79 (2001) 214–221.

P. Lalitha, G. Manoharan, R. Karpagam, et al., Trends in antibiotic resistance in bacterial keratitis isolates from South India, Br. J. Ophthalmol. 101 (2017) 108–113.

S. Marasini, S. Swift, S.J. Dean, S.E. Ormonde, J.P. Craig, Spectrum and sensitivity of bacterial keratitis isolates in Auckland, J. Ophthalmol. 2016 (2016).

P. Lalitha, N.V. Prajna, G. Manoharan, et al., Trends in bacterial and fungal keratitis in South India, 2002–2012, Br. J. Ophthalmol. 99 (2015) 192–194.

A. Shah, A. Sachdev, D. Coggon, et al., Geographic variations in microbial keratitis: an analysis of the peer-reviewed literature, Br. J. Ophthalmol. 95 (2011) 762–767.

S.M. Fleiszig, D.J. Evans, The pathogenesis of bacterial keratitis: studies with Pseudomonas aeruginosa, Clin. Exp. Optom. 85 (2002) 271–278.

F. Stapleton, L. Keay, K. Edwards, et al., The incidence of contact lens-related microbial keratitis in Australia, Ophthalmol. 115 (2008) 1655–1662.

J.K. Dart, C.F. Radford, D. Minassian, S. Verma, F. Stapleton, Risk factors for microbial keratitis with contemporary contact lenses: a case-control study, Ophthalmol. 115 (2008) 1647–1654.

E.B. Koo, K. Colby, Corneal diseases in children: infectious keratitis, Corneal Diseases in Children, Springer, Cham, 2017, pp. 13–38.

Y. Assefa, F. Moges, M. Endris, et al., Bacteriological profile and drug susceptibility patterns in dacryocystitis patients attending Gondar University Teaching Hospital, Northwest Ethiopia, BMC Ophthalmol. 15 (2015) 34.

S. Ataullah, B. Sloan, Acute dacryocystitis presenting as an orbital abscess, Clin. Exp. Ophthalmol. 30 (2002) 44–46.

A.G. Janssen, K. Mansour, J.J. Bos, R.A. Manoliu, J.A. Castelijns, Abscess of the lacrimal sac due to chronic or subacute dacryocystitis: treatment with temporary stent placement in the nasolacrimal duct, Radiology 215 (2000) 300–304.

J. Hartikainen, O.P. Lehtonen, K.M. Saari, Bacteriology of lacrimal duct obstruction in adults, Br. J. Ophthalmol. 81 (1997) 37–40.

A.C. Delia, G.C. Uuri, K. Battacharjee, Bacteriology of chronic dacryocystitis in adult population of Northeast India, Orbit 27 (2008) 243–247.

M. Chaudhary, A. Bhattarai, S. Adhikari, Bacteriology and antimicrobial susceptibility of adult chronic dacryocystitis, Nepal. J. Ophthalmol. 2 (2010) 105–113.

S. Ahuja, A.K. Chhabra, J. Agarwal, Study of bacterial spectrum in patients of chronic dacryocystitis, at a tertiary care centre in northern India, J. Community Med. Health Educ. 7 (2017) 2161-0711.

B. Janson, S. Idrees, Dacryocystitis. Encycl. Ophthalmol. (2016) 1–4.

, A., Roshan Kumar, Purabi Saha, Keshamma E., Parkavi Sachitanadam, & Muthukumar Subramanian. (2022). Docking Studies of Some Novel Hetrocyclic Compound as Acat Inhibitors: A Meta Analysis. Journal for Research in Applied Sciences and Biotechnology, 1(3), 33–41. https://doi.org/10.55544/jrasb.1.3.5

C.A. Ku, B. Forcina, P.R. LaSala, J. Nguyen, Granulicatella adiacens, an unusual causative agent in chronic dacryocystitis, J. Ophthalmic. Inflamm. Infect. 5 (2015) 12.

J. Kandati, G.K. Kumar, G. Avanish, M. Buchineni, R. Mohan, P.S. Pathapati, Microbial surveillance of acute and chronic dacryocystitis in a tertiary care hospital, J. Evol. Med. Dent. Sci. 4 (2015) 408–415.

Y. Assefa, F. Moges, M. Endris, et al., Bacteriological profile and drug susceptibility patterns in dacryocystitis patients attending Gondar University Teaching Hospital, Northwest Ethiopia, BMC Ophthalmol. 15 (2015) 34.

F. Eslami, H.R. Basir, A. Moradi, S.H. Farah, Microbiological study of dacryocystitis in northwest of Iran, Clin. Ophthalmol. 12 (2018) 1859.

A. Kuchar, J. Lukas, F.J. Steinkogler, Bacteriology and antibiotic therapy in congenital nasolacrimal duct obstruction, Acta Ophthalmol. Scand. 78 (2000) 694–698.

C.M. Putnam, Diagnosis and management of blepharitis: an optometrist's perspective, Clin. Optom. 8 (2016) 71–78.

E. Knop, N. Knop, T. Millar, H. Obata, D.A. Sullivan, The international workshop on meibomian gland dysfunction: report of the subcommittee on anatomy, physiology, and pathophysiology of the meibomian gland, Invest. Ophthalmol. Vis. Sci. 52 (2011) 1938–1978.

M.A. Lemp, K.K. Nichols, Blepharitis in the United States 2009: a survey-based perspective on prevalence and treatment, Ocul. Surf. 7 (2009) S1–S4.

W.B. Jackson, Blepharitis: current strategies for diagnosis and management, Can. J. Ophthalmol. 43 (2008) 170–179.

P. Hossain, A. Konstantopoulos, Blepharitis: remains a diagnostic enigma. A role for tea tree oil shampoo? Eye 29 (2015) 1520–1521.

I.B. Benkaouha, C. Le Brun, P.J. Pisella, J. Chandenier, P. Lanotte, The bacterial flora in blepharites, Fr. J. Ophthalmol. 38 (2015) 723–728.

S.H. Lee, D.H. Oh, J.Y. Jung, J.C. Kim, C.O. Jeon, Comparative ocular microbial communities in humans with and without blepharitis, Invest. Ophthalmol. Vis. Sci. 53 (2012) 5585–5593.

A. Szkaradkiewicz, I. Chudzicka-Strugała, T.M. Karpiński, et al., Bacillus oleronius and Demodex mite infestation in patients with chronic blepharitis, Clin. Microbiol. Infect. 18 (2012) 1020–1025.

Gurmeet Singh, Tarun Kapoor, & Harpreet Kaur. (2022). Current Status and Future Perspective on Enzyme Involving in Biocontrol of Plant Pathogen. Journal for Research in Applied Sciences and Biotechnology, 1(1), 12–17. https://doi.org/10.55544/jrasb.1.1.3

J.M. Dougherty, J.P. McCulley, Bacterial lipases and chronic blepharitis, Invest. Ophthalmol. Vis. Sci. 27 (1986) 486–491.

P.J. Driver, M.A. Lemp, Meibomian gland dysfunction, Surv. Ophthalmol. 40 (1996) 343–367.

A.J. Bron, J.M. Tiffany, The contribution of meibomian disease to dry eye, Ocul. Surf. 2 (2004) 149–164

J.R. Chandler, D.J. Langenbrunner, E.R. Stevens, The pathogenesis of orbital complications in acute sinusitis, Laryngoscope 80 (1970) 1414–1428.

E.G. Van der Veer, N.A. van der Poel, M.M. de Win, R.J. Kloos, P. Saeed, M.P. Mourits, True abscess formation is rare in bacterial orbital cellulitis; consequences for treatment, Am. J. Otolaryngol. 38 (2017) 130–134.

T. Ekhlassi, N. Becker, Preseptal and orbital cellulitis, Dis. Mon. 63 (2017) 30–32.

J.J. Kanski, B. Bowling, Clinical Ophthalmology: A Systematic Approach, Elsevier Health Sciences, 2011.

J.B. Holds, Basic and Clinical Science Course, Section 7: Orbit, Eyelids, and Lacrimal System 2013–2014, American Academy of Ophthalmology, 2013.

B. Crystal, D. Bourget, Periorbital cellulitis, StatPearls, StatPearls Publishing, 2018.

E. Peker, E. Cagan, M. Dogan, A. Kilic, H. Caksen, O. Yesilmen, Periorbital cellulitis caused by Bacillus thuringiensis, Eur. J. Ophthalmol. 20 (2010) 243–245.

S. Fanella, A. Singer, J. Embree, Presentation and management of pediatric orbital cellulitis, Can. J. Infect Dis. Med. Microbiol. 22 (2011) 97–100.

S.P. Donahue, G. Schwartz, Preseptal and orbital cellulitis in childhood: a changing microbiologic spectrum, Ophthalmol. 105 (1998) 1902–1906.

A. Danishyar, S.R. Sergent, Orbital cellulitis, StatPearls [Internet], StatPearls Publishing, 2018.

N.S. Raja, N.N. Singh, Bilateral orbital cellulitis due to Neisseria gonorrhoeae and Staphylococcus aureus: a previously unreported case, J. Med. Microbiol. 54 (2005) 609–611

W.M. De Melo, C.K. Sonoda, E. Hochuli-Vieira, et al., Paranasal sinus infection causing orbital subperiosteal abscess: surgical management of this devastating entity, Oral Maxillofac. Surg. 17 (2013) 131–135. R.R. Pappuru, V.P. Dave, A. Pathengay, et al., Endophthalmitis progressing to panophthalmitis: clinical features, demographic profile, and factors predicting outcome, Semin. Ophthalmol. 33 (2018) 671–674

L. Krėpštė, R. Žemaitienė, V. Barzdžiukas, A. Miliauskas, Bilateral endogenous bacterial panophthalmitis, Medicina 49 (2013) 23.

S. Srichatrapimuk, D. Wattanatranon, S. Sungkanuparph, Tuberculous panophthalmitis with lymphadenitis and central nervous system tuberculoma, Case. Rep. Infect. Dis. 2016 (2016), https://doi.org/10.1155/2016/6785382.

N. Okhravi, H.M. Towler, P. Hykin, M. Matheson, S. Lightman, Assessment of a standard treatment protocol on visual outcome following presumed bacterial endophthalmitis, Br. J. Ophthalmol. 81 (1997) 719–725.

R.K. Forster, R.L. Abbott, H. Gelender, Management of infectious endophthalmitis, Ophthalmol. 87 (1980) 313–319.

G.A. Peyman, D.W. Vastine, H.I. Meisels, The experimental and clinical use of intravitreal antibiotics to treat bacterial and fungal endophthalmitis, Doc. Ophthalmol. 39 (1975) 183–201

P.L. Cornut, S. Boisset, J.P. Romanet, et al., Principles and applications of molecular biology techniques for the microbiological diagnosis of acute post-operative endophthalmitis, Surv. Ophthalmol. 59 (2014) 286–303.

J. Biswas, A.J. Mayr, W.J. Martin, N.A. Rao, Detection of human cytomegalovirus in ocular tissue by polymerase chain reaction and in situ DNA hybridization, Graefes Arch. Clin. Exp. Ophthalmol. 231 (1993) 66–70.

P.G. Hykin, K. Tobal, G. McIntyre, M.M. Matheson, H.M. Towler, S.L. Lightman, The diagnosis of delayed post-operative endophthalmitis by polymerase chain reaction of bacterial DNA in vitreous samples, J. Med. Microbiol. 40 (1994) 408–415.

K.L. Therese, A.R. Anand, H.N. Madhavan, Polymerase chain reaction in the diagnosis of bacterial endophthalmitis, Br. J. Ophthalmol. 82 (1998) 1078–1082.

A.R. Anand, H.N. Madhavan, K.L. Therese, Use of polymerase chain reaction (PCR) and DNA probe hybridization to determine the Gram reaction of the infecting bacterium in the intraocular fluids of patients with endophthalmitis, J. Infect. 41 (2000) 221–226.

N.M. Carroll, E.E. Jaeger, S. Choudhury, et al., Detection of and discrimination between gram-positive and gram-negative bacteria in intraocular samples by using nested PCR, J. Clin. Microbiol. 38 (2000) 1753–1757.

N. Okhravi, P. Adamson, N. Carroll, et al., PCR-based evidence of bacterial involvement in eyes with suspected intraocular infection, Invest. Ophthalmol. Vis. Sci. 41 (2000) 3474–3479.

N. Okhravi, P. Adamson, M.M. Matheson, H.M. Towler, S. Lightman, PCRRFLP–Mediated detection and speciation of bacterial species causing endophthalmitis, Invest. Ophthalmol. Vis. Sci. 41 (2000) 1438–1447.

Y. Navarro-Noya, C. Hernández-Rodríguez, J.C. Zenteno, et al., 16S rRNA genebased identification of bacteria in postoperative endophthalmitis by PCRDenaturing Gradient Gel Electrophoresis (PCR-DGGE) fingerprinting, Braz. J. Microbiol. 43 (2012) 283–287.

P. Aarthi, R. Harini, M. Sowmiya, J. Malathi, K.L. Therese, H.N. Madhavan, Identification of bacteria in culture negative and polymerase chain reaction (PCR) positive intraocular specimen from patients with infectious endopthalmitis, J. Microbiol. Methods 85 (2011) 47–52.

R. Jayasudha, V. Narendran, P. Manikandan, S.R. Prabagaran, Identification of polybacterial communities in patients with postoperative, posttraumatic, and endogenous endophthalmitis through 16S rRNA gene libraries, J. Clin. Microbiol. 52 (2014) 1459–1466.

S.M. Fleiszig, D.J. Evans, The pathogenesis of bacterial keratitis: studies with Pseudomonas aeruginosa, Clin. Exp. Optom. 85 (2002) 271–278.

R.P. Kowalski, P.P. Thompson, P.R. Kinchington, Y.J. Gordon, Evaluation of the SmartCycler II system for real-time detection of viruses and Chlamydia from ocular specimens, Arch. Ophthalmol. 124 (2006) 1135–1139

P. Goldschmidt, H. Rostane, M. Sow, A. Goépogui, L. Batellier, C. Chaumeil, Detection by broad-range real-time PCR assay of Chlamydia species infecting human and animals, Br. J. Ophthalmol. 90 (2006) 1425–1429.

S. Sugita, N. Shimizu, K. Watanabe, et al., Diagnosis of bacterial endophthalmitis by broad-range quantitative PCR, Br. J. Ophthalmol. 95 (2011) 345–349

P.J. Bispo, G.B. de Melo, A.L. Hofling-Lima, A.C. Pignatari, Detection and gram discrimination of bacterial pathogens from aqueous and vitreous humor using realtime PCR assays, Invest. Ophthalmol. Vis. Sci. 52 (2011) 873–881.

M. Ogawa, S. Sugita, N. Shimizu, K. Watanabe, I. Nakagawa, M. Mochizuki, Broadrange real-time PCR assay for detection of bacterial DNA in ocular samples from infectious endophthalmitis, Jpn. J. Ophthalmol. 56 (2012) 529–535.

C.R. Joseph, P. Lalitha, K.R. Sivaraman, K. Ramasamy, U.C. Behera, Real-time polymerase chain reaction in the diagnosis of acute postoperative endophthalmitis, Am. J. Ophthalmol. 153 (2012) 1031–1037.

S. Sugita, M. Ogawa, N. Shimizu, et al., Use of a comprehensive polymerase chain reaction system for diagnosis of ocular infectious diseases, Ophthalmol. 120 (2013) 1761–1768.

A. Last, S. Molina-Gonzalez, E. Cassama, et al., Development and evaluation of a next-generation digital PCR diagnostic assay for ocular Chlamydia trachomatis infections, J. Clin. Microbiol. 51 (2013) 2195–2203.

R.P. Kowalski, L.M. Karenchak, L.V. Raju, N. Ismail, The verification of nucleic acid amplification testing (Gen-Probe Aptima Assay) for chlamydia trachomatis from ocular samples, Ophthalmol. 122 (2015) 244–247.

T. Notomi, H. Okayama, H. Masubuchi, et al., Loop-mediated isothermal amplification of DNA, Nucleic Acids Res. 28 (2000) e63.

H. Kaneko, T. Iida, K. Aoki, S. Ohno, T. Suzutani, Sensitive and rapid detection of herpes simplex virus and varicella-zoster virus DNA by loop-mediated isothermal amplification, J. Clin. Microbiol. 43 (2005) 3290–3296.

A.K. Reddy, P.K. Balne, R.K. Reddy, A. Mathai, I. Kaur, Loop-mediated isothermal amplification assay for the diagnosis of retinitis caused by herpes simplex virus-1, Clin. Microbiol. Infect. 17 (2011) 210–213.

J.S. Kumar, D. Saxena, M. Parida, S. Rathinam, Evaluation of real-time reversetranscription loop-mediated isothermal amplification assay for clinical diagnosis of West Nile virus in patients, Indian J. Med. Res. 147 (2018) 293.

K.D. Senarath, R.B. Usgodaarachchi, V. Navaratne, et al., Non specific amplification with the LAMP technique in the diagnosis of tuberculosis in Sri Lankan settings, J. Tubercul. Res. 2 (2014) 168.

V. Muthappan, A.Y. Lee, T.L. Lamprecht, et al., Biome representational in silico karyotyping, Genome Res. 21 (2011) 626–633.

A.Y. Lee, L. Akileswaran, M.D. Tibbetts, S.J. Garg, R.N. Van Gelder, Identification of torque teno virus in culture-negative endophthalmitis by representational deep DNA sequencing, Ophthalmol. 122 (2015) 524–530.

Z. Li, F.P. Breitwieser, J. Lu, et al., Identifying corneal infections in formalin-fixed specimens using next generation sequencing, Invest. Ophthalmol. Vis. Sci. 59 (2018) 280–288.

D. Deshmukh, J. Joseph, M. Chakrabarti, et al., New insights into culture negative endophthalmitis by unbiased next generation sequencing, Sci. Rep. 9 (2019) 844.

S. Nakano, S. Sugita, Y. Tomaru, et al., Establishment of multiplex solid-phase strip PCR test for detection of 24 ocular infectious disease pathogens, Invest. Ophthalmol. Vis. Sci. 58 (2017) 1553–1559.

S. Sugita, N. Shimizu, K. Watanabe, et al., Use of multiplex PCR and real-time PCR to detect human herpes virus genome in ocular fluids of patients with uveitis, Br. J. Ophthalmol. 92 (2008) 928–932.

M.T. Kuo, C.C. Chien, J. Lo, et al., A DNA dot hybridization model for assessment of bacterial bioburden in orthokeratology lens storage cases, Invest. Ophthalmol. Vis. Sci. 56 (2015) 445–450.

P.C. Fang, J. Lo, T.C. Chang, et al., Bacterial bioburden decrease in orthokeratology lens storage cases after forewarning: assessment by the DNA dot hybridization assay, Eye Contact Lens 43 (2017) 174.

A. Mailhac, H. Durand, S. Boisset, et al., MALDI-TOF mass spectrometry for rapid diagnosis of postoperative endophthalmitis, J. proteomics 152 (2017) 150–152.

Shivendra Verma, Shalini singh (2020). An emerging food borne listeriosis (L. monocytognse) in society, a mini review world wide and in india, IJRASB, vol.7, 337-342.

H.J. Pandya, M.K. Kanakasabapathy, S. Verma, et al., Label-free electrical sensing of bacteria in eye wash samples: a step towards point-of-care detection of pathogens in patients with infectious keratitis, Biosens. Bioelectron. 91 (2017) 32–39.

Painter J, Slutsker L. Listeriosis in humans. In: Ryser ET, Marth EH, editors. Listeria, Listeriosis, and Food Safety. ed 3. Boca Raton: Taylor and Francis; 2007. pp. 85–110.

Betriu C, Fuentemilla S, Méndez R, Picazo JJ, García-Sánchez J. Endophthalmitis caused by Listeria monocytogenes. J Clin Microbiol. 2001;39:2742–2744.

Eliott D, O'Brien TP, Green WR, Jampel HD, Goldberg MF. Elevated intraocular pressure, pigment dispersion and dark hypopyon in endogenous endophthalmitis from Listeria monocytogenes. Surv Ophthalmol. 1992;37:117–124.

Goodner EK, Okumoto M. Intraocular listeriosis. Am J Ophthalmol. 1967;64:682–686.

Melo GB, Bispo PJM, Yu MCZ, Pignatari AC, Höfling-Lima AL 2011. Microbial profile and antibiotic susceptibility of culture-positive bacterial endophthalmitis. Eye25:382–388. doi:10.1038/eye.2010.236.

Gupta A, Orlans HO, Hornby SJ, Bowler ICJ. 2014. Microbiology and visual outcomes of culture-positive bacterial endophthalmitis in Oxford, UK. Graefes Arch Clin Exp Ophthalmol 252:1825–1830. doi:10.1007/s00417-014-2658-7.

Kessner R, Golan S, Barak A. 2014. Changes in the etiology of endophthalmitis from 2003 to 2010 in a large tertiary medical center. Eur J Ophthalmol 24:918–924. doi:10.5301/ejo.5000473.

Falavarjani KG, Nekoozadeh S, Modarres M, Parvaresh MM, Hashemi M, Soodi R, Alemzadeh SA. 2012. Isolates and antibiotic resistance of culture-proven endophthalmitis cases presented to a referral center in Tehran. Middle East Afr J Ophthalmol19:361–363. doi:10.4103/0974-9233.102740.

Moloney TP, Park J. 2014. Microbiological isolates and antibiotic sensitivities in culture-proven endophthalmitis: a 15-year review. Br J Ophthalmol 98:1492–1497. doi:10.1136/bjophthalmol-2014-305030.

Nam KY, Lee JE, Lee JE, Jeung WJ, Park JM, Park JM, Chung IY, Han YS, Yun IH, Kim HW, Byon IS

. 2015. Clinical features of infectious endophthalmitis in South Korea: a five-year multicenter study. BMC Infect Dis15:177–183. doi:10.1186/s12879-015-0900-5

Shivendra Verma, Shalini Singh (2022), A study of identification listeria monocytognes bacteria isolated from raw vegetables in madhya pradesh, india; Ecology, environment and conservation.vol 28, S 539- s543.

Sharma S, Padhi TR, Basu S, Kar S, Roy A, Das T. 2014. Endophthalmitis patients seen in a tertiary eye care centre in Odisha: a clinicomicrobiological analysis. Indian J Med Res 139:91–98.

Gharamah AA, Moharram AM, Ismail MA, Al-Hussaini AK. 2012. Bacterial and fungal endophthalmitis in Upper Egypt: related species and risk factors. Asian Pac J Trop Biomed 2:655–659. doi:10.1016/S2221-1691(12)60115-4.

Duan F, Wu K, Liao J, Zheng Y, Yuan Z, Tan J, Lin X. 2016. Causative microorganisms of infectious endophthalmitis: a 5-year retrospective study. J Ophthalmol doi:10.1155/2016/6764192.

Simunovic MP, Rush RB, Hunyor AP, Chang A. 2012. Endophthalmitis following intravitreal injection versus endophthalmitis following cataract surgery: clinical features, causative organisms and post-treatment outcomes. Br J Ophthalmol 96:862–866. doi:10.1136/bjophthalmol-2011-301439

Downloads

Published

2022-10-31

How to Cite

Verma, S., & Singh, S. (2022). Microorganisms’ Effects and Mechanisms in Ocular Infections: A Systematic Review. Journal for Research in Applied Sciences and Biotechnology, 1(4), 13–25. https://doi.org/10.55544/jrasb.1.4.3