Article Review: Acentobacter bummanii

Authors

  • Salaheldeen B. Alwindy Department of Biology, College of Science, University of Baghdad, Baghdad, IRAQ.

DOI:

https://doi.org/10.55544/jrasb.3.1.53

Keywords:

Acinetobacter baumannii, antibiotic, stress, pathogen, infection virulence

Abstract

Acinetobacter baumannii is highly invasive, resistant to multiple drugs bacteria that are primary source of nosocomial illness in the modern hospital systems. It has been linked to a significant death rate or has been identified as a causative of meningitis, pneumonia; a condition called urine tract illnesses, or wound diseases. Many virulence variables, such as as porins, capsules, including cell wall a substance called lip digestive enzymes, biofilm formation, movement, or iron-acquisition structures, amongst other people, contribute to severity in A. baumannii illnesses. These virulence factors aid in the organism's ability to withstand harsh ecological circumstances also permit the growth of serious diseases. For tandem to the rise for A. baumannii diseases, difficult varied resistant pathways for this pathogen are effectively known, leading to the low efficacy of main antibiotics groups. A. baumannii has a distinct capacity to sustain a resistant to multiple drugs phenotype via a diverse range of antibiotic-hydrolyzing digestive enzymes, modifications to the efflux pumps, impermeability, or alterations in pharmaceutical targets, making therapy even more intricate. Understanding of A. baumannii's transmissible diseases revolves on a comprehension of the processes underlying illness, pathogenicity, or resistant development. This review's objectives are to emphasize A. baumannii illnesses major disease-causing variables while also touching on the processes behind resistant to different antibiotics groups.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Nasr P. Genetics, epidemiology, and clinical manifestations of multidrugresistant Acinetobacter baumannii. J. Hosp. Infect. 2020;104:4–11. doi: 10.1016/j.jhin.2019.09.021.

Kyriakidis I., Palabougiouki M., Vasileiou E., Tragiannidis A., Stamou M., Moudiou T., Vyzantiadis T., Gombakis N., Hatzilianou M. Candidemia complicating biliary atresia in an infant with hemoglobinopathy. Turk. Pediatri. Ars. 2019;54:129–132. doi: 10.14744/TurkPediatriArs.2019.67674.

Tacconelli E., Carrara E., Savoldi A., Harbarth S., Mendelson M., Monnet D.L., Pulcini C., Kahlmeter G., Kluytmans J., Carmeli Y., et al. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 2018;18:318–327. doi: 10.1016/S1473-3099(17)30753-3.

Mohd Sazlly Lim S., Zainal Abidin A., Liew S.M., Roberts J.A., Sime F.B. The global prevalence of multidrug-resistance among Acinetobacter baumannii causing hospital-acquired and ventilator-associated pneumonia and its associated mortality: A systematic review and meta-analysis. J. Infect. 2019;79:593–600. doi: 10.1016/j.jinf.2019.09.012.

European Centre for Disease Prevention and Control . Antimicrobial Resistance in the EU/EEA (EARS-Net)—Annual Epidemiological Report 2019. ECDC; Stockholm, Sweden: 2020.

Moghnieh R.A., Kanafani Z.A., Tabaja H.Z., Sharara S.L., Awad L.S., Kanj S.S. Epidemiology of common resistant bacterial pathogens in the countries of the Arab League. Lancet Infect. Dis. 2018;18:e379–e394. doi: 10.1016/S1473-3099(18)30414-6.

Nordmann P., Poirel L. Epidemiology and Diagnostics of Carbapenem Resistance in Gram-negative Bacteria. Clin. Infect. Dis. 2019;69:S521–S528. doi: 10.1093/cid/ciz824.

Piperaki E.T., Tzouvelekis L.S., Miriagou V., Daikos G.L. Carbapenem-resistant Acinetobacter baumannii: In pursuit of an effective treatment. Clin. Microbiol. Infect. 2019;25:951–957. doi: 10.1016/j.cmi.2019.03.014.

Garnacho-Montero J., Timsit J.F. Managing Acinetobacter baumannii infections. Curr. Opin. Infect. Dis. 2019;32:69–76. doi: 10.1097/QCO.0000000000000518.

Karakonstantis S., Kritsotakis E.I., Gikas A. Treatment options for K. pneumoniae, P. aeruginosa and A. baumannii co-resistant to carbapenems, aminoglycosides, polymyxins and tigecycline: An approach based on the mechanisms of resistance to carbapenems. Infection. 2020;48:835–851. doi: 10.1007/s15010-020-01520-6.

Mulani M.S., Kamble E.E., Kumkar S.N., Tawre M.S., Pardesi K.R. Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: A review. Front. Microbiol. 2019;10:539. doi: 10.3389/fmicb.2019.00539.

Pakharukova N., Tuittila M., Paavilainen S., Malmi H., Parilova O., Teneberg S., Knight S.D., Zavialov A.V. Structural basis for Acinetobacter baumannii biofilm formation. Proc. Natl. Acad. Sci. USA. 2018;115:5558–5563. doi: 10.1073/pnas.1800961115.

Yang C.H., Su P.W., Moi S.H., Chuang L.Y. Biofilm formation in Acinetobacter baumannii: Genotype-phenotype correlation. Molecules. 2019;24:1849. doi: 10.3390/molecules24101849.

Krzyściak P., Chmielarczyk A., Pobiega M., Romaniszyn D., Wójkowska-Mach J. Acinetobacter baumannii isolated from hospital-acquired infection: Biofilm production and drug susceptibility. APMIS. 2017;125:1017–1026. doi: 10.1111/apm.12739.

Tooke C.L., Hinchliffe P., Bragginton E.C., Colenso C.K., Hirvonen V.H.A., Takebayashi Y., Spencer J. β-Lactamases and β-Lactamase Inhibitors in the 21st Century. J. Mol. Biol. 2019;431:3472–3500. doi: 10.1016/j.jmb.2019.04.002.

Ghafourian S., Sadeghifard N., Soheili S., Sekawi Z. Extended spectrum beta-lactamases: Definition, classification and epidemiology. Curr. Issues Mol. Biol. 2015;17:11–22. doi: 10.21775/cimb.017.011.

Smiline A.S.G., Vijayashree J.P., Paramasivam A. Molecular characterization of plasmid-encoded blaTEM, blaSHV and blaCTX-M among extended spectrum β-lactamases ESBLs producing Acinetobacter baumannii. Br. J. Biomed. Sci. 2018;75:200–202. doi: 10.1080/09674845.2018.1492207.

Martinez T., Martinez I., Vazquez G.J., Aquino E.E., Robledo I.E. Genetic environment of the KPC gene in Acinetobacter baumannii ST2 clone from Puerto Rico and genomic insights into its drug resistance. J. Med. Microbiol. 2016;65:784–792. doi: 10.1099/jmm.0.000289.

Moulana Z., Babazadeh A., Eslamdost Z., Shokri M., Ebrahimpour S. Phenotypic and genotypic detection of metallo-beta-lactamases in Carbapenem resistant Acinetobacter baumannii. Casp. J. Intern. Med. 2020;11:171–176. doi: 10.22088/cjim.11.2.171.

Chatterjee S., Datta S., Roy S., Ramanan L., Saha A., Viswanathan R., Som T., Basu S. Carbapenem resistance in Acinetobacter baumannii and other Acinetobacter spp. causing neonatal sepsis: Focus on NDM-1 and its linkage to ISAba125. Front. Microbiol. 2016;7:1126. doi: 10.3389/fmicb.2016.01126.

Amin M., Navidifar T., Shooshtari F.S., Goodarzi H. Association of the genes encoding metallo-β-lactamase with the presence of integrons among multidrug-resistant clinical isolates of Acinetobacter baumannii. Infect. Drug Resist. 2019;12:1171–1180. doi: 10.2147/IDR.S196575.

López C., Ayala J.A., Bonomo R.A., González L.J., Vila A.J. Protein determinants of dissemination and host specificity of metallo-β-lactamases. Nat. Commun. 2019;10:3617. doi: 10.1038/s41467-019-11615-w.

Couchoud C., Bertrand X., Valot B., Hocquet D. Deciphering the role of insertion sequences in the evolution of bacterial epidemic pathogens with panisa software. Microb. Genom. 2020;6:e000356. doi: 10.1099/mgen.0.000356.

Ingti B., Upadhyay S., Hazarika M., Khyriem A.B., Paul D., Bhattacharya P., Joshi S.R., Bora D., Dhar D., Bhattacharjee A. Distribution of carbapenem resistant Acinetobacter baumannii with blaADC-30 and induction of ADC-30 in response to beta-lactam antibiotics. Res. Microbiol. 2020;171:128–133. doi: 10.1016/j.resmic.2020.01.002.

Lai J.H., Yang J.T., Chern J., Chen T.L., Wu W.L., Liao J.H., Tsai S.F., Liang S.Y., Chou C.C., Wu S.H. Comparative phosphoproteomics reveals the role of AmpC β-lactamase phosphorylation in the clinical imipenem-resistant strain Acinetobacter baumannii SK17. Mol. Cell Proteom. 2016;15:12–25. doi: 10.1074/mcp.M115.051052.

Wong M.H.-Y., Chan B.K.-W., Chan E.W.-C., Chen S. Over-Expression of ISAba1-Linked Intrinsic and Exogenously Acquired OXA Type Carbapenem-Hydrolyzing-Class D-ß-Lactamase-Encoding Genes Is Key Mechanism Underlying Carbapenem Resistance in Acinetobacter baumannii. Front. Microbiol. 2019;10:2809. doi: 10.3389/fmicb.2019.02809.

Ewers C., Klotz P., Leidner U., Stamm I., Prenger-Berninghoff E., Göttig S., Semmler T., Scheufen S. OXA-23 and ISAba1–OXA-66 class D β-lactamases in Acinetobacter baumannii isolates from companion animals. Int. J. Antimicrob. Agents. 2017;49:37–44. doi: 10.1016/j.ijantimicag.2016.09.033.

Morakchi H., Loucif L., Gacemi-Kirane D., Rolain J.M. Molecular characterisation of carbapenemases in urban pigeon droppings in France and Algeria. J. Glob. Antimicrob. Resist. 2017;9:103–110. doi: 10.1016/j.jgar.2017.02.010.

Iyer R., Moussa S.H., Durand-Réville T.F., Tommasi R., Miller A. Acinetobacter baumannii OmpA Is a Selective Antibiotic Permeant Porin. ACS Infect. Dis. 2018;4:373–381. doi: 10.1021/acsinfecdis.7b00168.

Kwon H.I., Kim S., Oh M.H., Na S.H., Kim Y.J., Jeon Y.H., Lee J.C. Outer membrane protein A contributes to antimicrobial resistance of Acinetobacter baumannii through the OmpA-like domain. J. Antimicrob. Chemother. 2017;72:3012–3015. doi: 10.1093/jac/dkx257.

Zhong X., Wu X., Schweppe D.K., Chavez J.D., Mathay M., Eng J.K., Keller A., Bruce J.E. In Vivo Cross-Linking MS Reveals Conservation in OmpA Linkage to Different Classes of β-Lactamase Enzymes. J Am. Soc. Mass Spectrom. 2020;31:190–195. doi: 10.1021/jasms.9b00021.

Khorsi K., Messai Y., Ammari H., Hamidi M., Bakour R. ISAba36 inserted into the outer membrane protein gene carO and associated with the carbapenemase gene blaOXA-24-like in Acinetobacter baumannii. J. Glob. Antimicrob. Resist. 2018;15:107–108. doi: 10.1016/j.jgar.2018.08.020.

Zhu L.J., Chen X.Y., Hou P.F. Mutation of CarO participates in drug resistance in imipenem-resistant Acinetobacter baumannii. J. Clin. Lab. Anal. 2019;33:e22976. doi: 10.1002/jcla.22976.

Zahn M., Bhamidimarri S.P., Baslé A., Winterhalter M., Van Den Berg B. Structural Insights into Outer Membrane Permeability of Acinetobacter baumannii. Structure. 2016;24:221–231. doi: 10.1016/j.str.2015.12.009.

Cecchini T., Yoon E.J., Charretier Y., Bardet C., Beaulieu C., Lacoux X., Docquier J.D., Lemoine J., Courvalin P., Grillot-Courvalin C., et al. Deciphering multifactorial resistance phenotypes in Acinetobacter baumannii by genomics and targeted label-free proteomics. Mol. Cellul Proteom. 2018;17:442–456. doi: 10.1074/mcp.RA117.000107.

Hawkey J., Ascher D.B., Judd L.M., Wick R.R., Kostoulias X., Cleland H., Spelman D.W., Padiglione A., Peleg A.Y., Holt K.E. Evolution of carbapenem resistance in Acinetobacter baumannii during a prolonged infection. Microb. Genom. 2018;4:e000165. doi: 10.1099/mgen.0.000165.

Leus I.V., Weeks J.W., Bonifay V., Smith L., Richardson S., Zgurskaya H.I. Substrate specificities and efflux efficiencies of RND efflux pumps of Acinetobacter baumannii. J. Bacteriol. 2018;200:e00049-18. doi: 10.1128/JB.00049-18.

Vázquez-López R., Solano-Gálvez S.G., Vignon-Whaley J.J.J., Vaamonde J.A.A., Alonzo L.A.P., Reséndiz A.R., Álvarez M.M., López E.N.V., Franyuti-Kelly G., Álvarez-Hernández D.A., et al. Acinetobacter baumannii resistance: A real challenge for clinicians. Antibiotics. 2020;9:205. doi: 10.3390/antibiotics9040205.

Garneau-Tsodikova S., Labby K.J. Mechanisms of resistance to aminoglycoside antibiotics: Overview and perspectives. MedChemComm. 2016;7:11–27. doi: 10.1039/C5MD00344J.

Wang H., Wang J., Yu P., Ge P., Jiang Y., Xu R., Chen R., Liu X. Identification of antibiotic resistance genes in the multidrug-resistant Acinetobacter baumannii strain, MDR-SHH02, using whole-genome sequencing. Int. J. Mol. Med. 2017;39:364–372. doi: 10.3892/ijmm.2016.2844.

Sheikhalizadeh V., Hasani A., Rezaee M.A., Rahmati-Yamchi M., Hasani A., Ghotaslou R., Goli H.R. Comprehensive study to investigate the role of various aminoglycoside resistance mechanisms in clinical isolates of Acinetobacter baumannii. J. Infect. Chemother. 2017;23:74–79. doi: 10.1016/j.jiac.2016.09.012.

De Silva P.M., Kumar A. Signal transduction proteins in Acinetobacter baumannii: Role in antibiotic resistance, virulence, and potential as drug targets. Front. Microbiol. 2019;10:49. doi: 10.3389/fmicb.2019.00049.

Xu C., Bilya S.R., Xu W. adeABC efflux gene in Acinetobacter baumannii. New Microbes New Infect. 2019;30:100549. doi: 10.1016/j.nmni.2019.100549.

Xu A., Zhu H., Gao B., Weng H., Ding Z., Li M., Weng X., He G. Diagnosis of severe community-acquired pneumonia caused by Acinetobacter baumannii through next-generation sequencing: A case report. BMC Infect. Dis. 2020;20:45. doi: 10.1186/s12879-019-4733-5.

Warburton P.J., Amodeo N., Roberts A.P. Mosaic tetracycline resistance genes encoding ribosomal protection proteins. J. Antimicrob. Chemother. 2016;71:3333–3339. doi: 10.1093/jac/dkw304.

Hua X., Pan C., Zhu L., Liu Z., Xu Q., Wang H., Yu Y. Complete genome sequence of Acinetobacter baumannii A1296 (ST1469) with a small plasmid harbouring the tet(39) tetracycline resistance gene. J. Glob. Antimicrob. Resist. 2017;11:105–107. doi: 10.1016/j.jgar.2017.09.020.

Lin L., Wang S.F., Yang T.Y., Hung W.C., Chan M.Y., Tseng S.P. Antimicrobial resistance and genetic diversity in ceftazidime non-susceptible bacterial pathogens from ready-to-eat street foods in three Taiwanese cities. Sci. Rep. 2017;7:15515. doi: 10.1038/s41598-017-15627-8.

Yuhan Y., Ziyun Y., Yongbo Z., Fuqiang L., Qinghua Z. Over expression of AdeABC and AcrAB-TolC efflux systems confers tigecycline resistance in clinical isolates of Acinetobacter baumannii and Klebsiella pneumoniae. Rev. Soc. Bras. Med. Trop. 2016;49:165–171. doi: 10.1590/0037-8682-0411-2015.

Foong W.E., Wilhelm J., Tam H.K., Pos K.M. Tigecycline efflux in Acinetobacter baumannii is mediated by TetA in synergy with RND-type efflux transporters. J. Antimicrob. Chemother. 2020;75:1135–1139. doi: 10.1093/jac/dkaa015.

Li L., Hassan K.A., Tetu S.G., Naidu V., Pokhrel A., Cain A.K., Paulsen I.T. The Transcriptomic Signature of Tigecycline in Acinetobacter baumannii. Front. Microbiol. 2020;11:565438. doi: 10.3389/fmicb.2020.565438.

He T., Wang R., Liu D., Walsh T.R., Zhang R., Lv Y., Ke Y., Ji Q., Wei R., Liu Z., et al. Emergence of Plasmid-Mediated High-Level Tigecycline Resistance Genes in Animals and Humans. Nat. Microbiol. 2019;4:1450–1456. doi: 10.1038/s41564-019-0445-2.

Wang L., Liu D., Lv Y., Cui L., Li Y., Li T., Song H., Hao Y., Shen J., Wang Y., et al. Novel Plasmid-Mediated tet(X5) Gene Conferring Resistance to Tigecycline, Eravacycline, and Omadacycline in a Clinical Acinetobacter baumannii Isolate. Antimicrob. Agents Chemother. 2020;64:e01326-19. doi: 10.1128/AAC.01326-19.

Zaki M.E.S., Abou ElKheir N., Mofreh M. Molecular Study of Quinolone Resistance Determining Regions of gyrA Gene and parC Genes in Clinical Isolates of Acintobacter baumannii Resistant to Fluoroquinolone. Open Microbiol. J. 2018;12:116–122. doi: 10.2174/1874285801812010116.

Lari A.R., Ardebili A., Hashemi A. Ader-ades mutations & overexpression of the AdeABC efflux system in ciprofloxacin-resistant Acinetobacter baumannii clinical isolates. Indian J. Med. Res. 2018;147:413–421. doi: 10.4103/ijmr.IJMR_644_16.

D’Souza R., Pinto N.A., Le Phuong N., Higgins P.G., Vu T.N., Byun J.H., Cho Y.L., Choi J.R., Yong D. Phenotypic and genotypic characterization of Acinetobacter spp. panel strains: A cornerstone to facilitate antimicrobial development. Front. Microbiol. 2019;10:559. doi: 10.3389/fmicb.2019.00559.

Lee C.R., Lee J.H., Park M., Park K.S., Bae I.K., Kim Y.B., Cha C.J., Jeong B.C., Lee S.H. Biology of Acinetobacter baumannii: Pathogenesis, antibiotic resistance mechanisms, and prospective treatment options. Front. Cell Infect. Microbiol. 2017;7:55. doi: 10.3389/fcimb.2017.00055.

Cheng Y., Yang S., Jia M., Zhao L., Hou C., You X., Zhao J., Chen A. Comparative study between macrolide regulatory proteins MphR(A) and MphR(E) in ligand identification and DNA binding based on the rapid in vitro detection system. Anal. Bioanal. Chem. 2016;408:1623–1631. doi: 10.1007/s00216-015-9270-5.

Chopjitt P., Kerdsin A., Takeuchi D., Hatrongjit R., Boueroy P., Akeda Y., Tomono K., Hamada S. Whole genome analysis of extensively drug-resistant Acinetobacter baumannii clinical isolates in Thailand. Infect. Disord Drug Targets. 2020;20 doi: 10.2174/1871526520999201116201911.

Schroeder M.R., Lohsen S., Chancey S.T., Stephens D.S. High-Level Macrolide Resistance Due to the Mega Element mef(E)/mel in Streptococcus pneumoniae. Front. Microbiol. 2019;10:868. doi: 10.3389/fmicb.2019.00868.

Okada U., Yamashita E., Neuberger A., Morimoto M., Van Veen H.W., Murakami S. Crystal structure of tripartite-type ABC transporter MacB from Acinetobacter baumannii. Nat. Commun. 2017;8:1336. doi: 10.1038/s41467-017-01399-2.

Richmond G.E., Evans L.P., Anderson M.J., Wand M.E., Bonney L.C., Ivens A., Chua K.L., Webber M.A., Mark Sutton J., Peterson M.L., et al. The Acinetobacter baumannii two-component system aders regulates genes required for multidrug efflux, biofilm formation, and virulence in a strain-specific manner. mBio. 2016;7:e00430-16. doi: 10.1128/mBio.00430-16.

Li P., Huang Y., Yu L., Liu Y., Niu W., Zou D., Liu H., Zheng J., Yin X., Yuan J., et al. Isolation and Whole-genome Sequence Analysis of the Imipenem Heteroresistant Acinetobacter baumannii Clinical Isolate HRAB-85. Int. J. Infect. Dis. 2017;62:94–101. doi: 10.1016/j.ijid.2017.07.005.

López-Durán P.A., Fonseca-Coronado S., Lozano-Trenado L.M., Araujo-Betanzos S., Rugerio-Trujillo D.A., Vaughan G., Saldaña-Rivera E. Nosocomial transmission of extensively drug resistant Acinetobacter baumannii strains in a tertiary level hospital. PLoS ONE. 2020;15:e0231829. doi: 10.1371/journal.pone.0231829.

Moffatt J.H., Harper M., Boyce J.D. Mechanisms of Polymyxin Resistance. Adv. Exp. Med. Biol. 2019;1145:55–71. doi: 10.1007/978-3-030-16373-0_5.

Bojkovic J., Richie D.L., Six D.A., Rath C.M., Sawyer W.S., Hu Q., Dean C.R. Characterization of an Acinetobacter baumannii lptD deletion strain: Permeability defects and response to inhibition of lipopolysaccharide and fatty acid biosynthesis. J. Bacteriol. 2016;198:731–741. doi: 10.1128/JB.00639-15.

Sun B., Liu H., Jiang Y., Shao L., Yang S., Chen D. New Mutations Involved in Colistin Resistance in Acinetobacter baumannii. mSphere. 2020;5:e00895-19. doi: 10.1128/mSphere.00895-19.

Gerson S., Betts J.W., Lucaßen K., Nodari C.S., Wille J., Josten M., Göttig S., Nowak J., Stefanik D., Roca I., et al. Investigation of Novel pmrB and eptA Mutations in Isogenic Acinetobacter baumannii Isolates Associated with Colistin Resistance and Increased Virulence In Vivo. Antimicrob. Agents Chemother. 2019;63:e01586-18. doi: 10.1128/AAC.01586-18.

Gelbíčová T., Baráková A., Florianová M., Karpíšková R. Detection of colistin-resistant Acinetobacter baumannii with the mcr-4 gene. Klin. Mikrobiol. Infekc. Lek. 2019;25:4–6.

Martins-Sorenson N., Snesrud E., Xavier D.E., Cacci L.C., Iavarone A.T., McGann P., Riley L.W., Moreira B.M. A novel plasmid-encoded mcr-4.3 gene in a colistin-resistant Acinetobacter baumannii clinical strain. J. Antimicrob. Chemother. 2020;75:60–64. doi: 10.1093/jac/dkz413.

Hameed F., Khan M.A., Muhammad H., Sarwar T., Bilal H., Rehman T.U. Plasmid-mediated mcr-1 gene in Acinetobacter baumannii and Pseudomonas aeruginosa: First report from Pakistan. Rev. Soc. Bras. Med. Trop. 2019;52:e20190237. doi: 10.1590/0037-8682-0237-2019.

Paul D., Mallick S., Das S., Saha S., Ghosh A.K., Mandal S.M. Colistin Induced Assortment of Antimicrobial Resistance in a Clinical Isolate of Acinetobacter baumannii SD01. Infect. Disord. Drug Targets. 2019;20:501–505. doi: 10.2174/1871526519666190426153258.

Traglia G., Chiem K., Quinn B., Fernandez J.S., Montaña S., Almuzara M., Mussi M.A., Tolmasky M.E., Iriarte A., Centrón D., et al. Genome sequence analysis of an extensively drug-resistant Acinetobacter baumannii indigo-pigmented strain depicts evidence of increase genome plasticity. Sci. Rep. 2018;8:16961. doi: 10.1038/s41598-018-35377-5.

Foong W.E., Tam H.K., Crames J.J., Averhoff B., Pos K.M. The chloramphenicol/H+ antiporter CraA of Acinetobacter baumannii AYE reveals a broad substrate specificity. J. Antimicrob. Chemother. 2019;74:1192–1201. doi: 10.1093/jac/dkz024.

Karalewitz A.P.A., Millera S.I. Multidrug-resistant Acinetobacter baumannii chloramphenicol resistance requires an inner membrane permease. Antimicrob. Agents Chemother. 2018;62:e00513-18. doi: 10.1128/AAC.00513-18.

Chen C., Cui C.Y., Wu X.T., Fang L.X., He Q., He B., Long T.F., Liao X.P., Chen L., Liu Y.H., et al. Spread of tet(X5) and tet(X6) genes in multidrug-resistant Acinetobacter baumannii strains of animal origin. Vet. Microbiol. 2021;253:108954. doi: 10.1016/j.vetmic.2020.108954.

Downloads

Published

2024-03-10

How to Cite

B. Alwindy, S. (2024). Article Review: Acentobacter bummanii. Journal for Research in Applied Sciences and Biotechnology, 3(1), 345–357. https://doi.org/10.55544/jrasb.3.1.53