Synthesis, Characterization, Biological Properties, ADMET and Drug-likeness Analysis of Mn (II) complexes with Schiff Bases Derived from Sulphathiazole and 4-diethylaminosalicyaldehyde/Salicyaldehyde

Authors

  • Haruna, A. Department of Chemistry, Federal University Gusau, P.M.B 1001, Gusau, NIGERIA. https://orcid.org/0000-0002-3455-8868
  • Sirajo, I.T. Department of Pure and Industrial Chemistry, Bayero University, P.M.B 3011, Kano, NIGERIA.
  • Rumah, M.M. Department of Chemistry, Al-Qalam University Katsina, P.M.B 2137, Katsina, NIGERIA.
  • Albashir, Y. Department of Chemistry, Federal University, Dutsinma, P.M.B 5001, Dutsinma, NIGERIA.

DOI:

https://doi.org/10.55544/jrasb.2.6.10

Keywords:

Schiff base, complexes, antimicrobial activity, drug-likeness

Abstract

Mn (II) complexes were synthesized with the Schiff base ligand obtained by the condensation of sulfathiazole with 4-diethylaminosalicyaldehyde/Salicyaldehyde. Their characterization was performed by elemental analysis, molar conductance, melting points, magnetic susceptibility, infrared, and UV–Vis spectral analysis. The results suggest that the Schiff bases and their complex are synthesized in excellent yield, molar conductance studies on the complexes indicated they were non-electrolytic. The IR data indicated that the Schiff base ligand is tridentate coordinated to the metallic ion with two N atoms from the azomethine group and thiazole ring and one O atom from the phenolic group. The electronic spectral study showed octahedral geometry for all the complexes which are further supported by magnetic moment values. The ligand and its complexes were screened against four bacterial and two fungal strains using the disk diffusion method. The antimicrobial evaluation results revealed that the metal (II) complexes exhibited higher antimicrobial activity than the free Schiff base ligand. The ADMET and drug-likeness studies of the synthesized ligands indicated that the Schiff base ligands fulfill Lipinski’s, Ghoose, Veber, Egan, and Mugge rules but the complexes showed some deviations. They also displayed low toxicity levels.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

El-Sonbati, A., Mahmoud, W., Mohamed, G. G., Diab, M., Morgan, S., & Abbas, S. (2019). Synthesis, characterization of Schiff base metal complexes and their biological investigation. Applied Organometallic Chemistry, e5048. https://doi.org/10.1002/aoc.5048

Al Zoubi, W., Al-Hamdani, A. A., Ahmed, S. D., & Ko, Y. G. (2017). Synthesis, characterization, and biological activity of Schiff bases metal complexes. Journal of Physical Organic Chemistry, 31(2), e3752. https://doi.org/10.1002/poc.3752

Zhang, H., Jeyakkumar, P., Vijaya Kumar, K., & Zhou, C. (2015). Synthesis of novel sulfonamide azoles via C–N cleavage of sulfonamides by azole ring and relational antimicrobial study. New Journal of Chemistry, 39(7), 5776-5796. https://doi.org/10.1039/c4nj01932f.

Rayati, S., & Ashouri, F. (2012). Pronounced catalytic activity of oxo-vanadium(iv) Schiff base complexes in the oxidation of cyclooctene and styrene by tert-butyl hydroperoxide. Comptes Rendus Chimie, 15(8), 679-687. https://doi.org/10.1016/j.crci.2012.05.021

Liu, Y., Wang, L., & Yin, D. (2022). Catalyst- and solvent-free synthesis, characterization, biological activity of Schiff bases and their metal (II) complexes derived from ferrocene. https://doi.org/10.21203/rs.3.rs-2317280/v1

Singh, U. P., & Malik, A. (2022). Pd(Ii) Schiff base complex anchored on mcm-41, a reusable catalyst for the heck reaction. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4274111

Singh, P., & Quraishi, M. (2016). Corrosion inhibition of mild steel using novel bis Schiff’s bases as corrosion inhibitors: Electrochemical and surface measurement. Measurement, 86, 114-124. https://doi.org/10.1016/j.measurement.2016.02.052

Haruna, A., Rumah, M.M., Sani, U., & Ibrahim, A.K. (2021). Synthesis, characterization and corrosion inhibition studies on Mn (II) and Co (II) complexes derived from 1-{(Z)-[(2-hydroxyphenyl) imino]methyl}naphthalen-2-ol in 1M HCl solution. International Journal of Biological, Physical and Chemical Studies, 3(1), 09-18. https://doi.org/10.32996/ijbpcs.2021.3.1.2

Özkınalı, S., Yavuz, Ş., Tosun, T., Ali Köse, D., Gür, M., & Kocaokutgen, H. (2020). Synthesis, spectroscopic and thermal analysis and investigation of dyeing properties of o‐hydroxy Schiff bases and their metal complexes. ChemistrySelect, 5(40), 12624-12634. https://doi.org/10.1002/slct.202002470

Anacona, J., Mago, K., & Camus, J. (2018). Antibacterial activity of transition metal complexes with a tridentate NNO amoxicillin derived Schiff base. Synthesis and characterization. Applied Organometallic Chemistry, 32(7), e4374. https://doi.org/10.1002/aoc.4374

Qian, H., & Sun, N. (2019). Synthesis and crystal structures of manganese(III) complexes derived from bis-schiff bases with antibacterial activity. Transition Metal Chemistry, 44(6), 501-506. https://doi.org/10.1007/s11243-018-00296-x

Luo, X., Liu, Q., Han, Y., & Xue, L. (2020). Vanadium complexes derived from fluoro-substituted Schiff bases: Synthesis, crystal structures, and antimicrobial activity. Inorganic and Nano-Metal Chemistry, 50(9), 836-841. https://doi.org/10.1080/24701556.2020.1726387

Mahjoub, S., Ansari, S., & Heshmatpour, F. (2016). Preparation, characterization, antibacterial and antifungal activities of some transition metal complexes with novel Schiff base ligand derived from N-amino rhodanine. JOURNAL OF ADVANCES IN CHEMISTRY, 11(7), 3723-3728. https://doi.org/10.24297/jac.v11i7.2195

Castro, J., Diz, M., Durán-Carril, M. L., Alvo, S., Bada, L., Viña, D., & García-Vázquez, J. A. (2022). Antitumor activity of Cu(Ii) complexes with Schiff bases derived from N'-tosylbenzene-1,2-Diamine. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4163386

Özbek, N., Alyar, S., Alyar, H., Şahin, E., & Karacan, N. (2013). Synthesis, characterization and anti-microbial evaluation of Cu(II), Ni(II), Pt(II) and Pd(II) sulfonylhydrazone complexes; 2D-QSAR analysis of Ni(II) complexes of sulfonylhydrazone derivatives. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 108, 123-132. https://doi.org/10.1016/j.saa.2013.01.005

Devi, J., Yadav, M., Kumar, D., Naik, L., & Jindal, D. (2018). Some divalent metal(II) complexes of salicylaldehyde-derived Schiff bases: Synthesis, spectroscopic characterization, antimicrobial and in vitro anticancer studies. Applied Organometallic Chemistry, 33(2), e4693. https://doi.org/10.1002/aoc.4693

Induleka R, I. R., Chandrika P, A. C., Tamilselvi M, T. M., Ushanandhini S, U. S., & Gowri M, G. M. (2022). Evaluation of Anticancer activity of Schiff bases derived from pyridine and their metal complexes- A review. Oriental Journal Of Chemistry, 38(3), 517-536. https://doi.org/10.13005/ojc/380302

Kunai, S., Nalamada, K., Reddy, R. S., Vindhya, H., & Raju, M. (2022). A schiff base derivation from 1,2-diaminobenzene and cephaclor as well as its transition metal complexes, were synthesis, magnetic studies and spectroscopic studies. International Journal of Research in Pharmacy and Chemistry, 12(3), 38-38. https://doi.org/10.33289/ijrpc.12.3.2022.12(38)

Shukla, S., & Mishra, A. (2019). Metal complexes used as anti-inflammatory agents: Synthesis, characterization and anti-inflammatory action of vo(ii)-complexes. Arabian Journal of Chemistry, 12(7), 1715-1721. https://doi.org/10.1016/j.arabjc.2014.08.020

Amin Mir, M. (2022). Synthesis, catalysis and antimicrobial activity of 5d- metal chelate complex of Schiff base ligands. Inorganic Chemistry Communications, 142, 109594. https://doi.org/10.1016/j.inoche.2022.109594

Reiss, A., Cioateră, N., Dobrițescu, A., Rotaru, M., Carabet, A. C., Parisi, F., Gănescu, A., Dăbuleanu, I., Spînu, C. I., & Rotaru, P. (2021). Bioactive Co(II), Ni(II), and Cu(II) complexes containing a tridentate sulfathiazole-based (ONN) Schiff base. Molecules, 26(10), 3062. https://doi.org/10.3390/molecules26103062

Krátký, M., Dzurková, M., Janoušek, J., Konečná, K., Trejtnar, F., Stolaříková, J., & Vinšová, J. (2017). Sulfadiazine salicylaldehyde-based Schiff bases: Synthesis, antimicrobial activity and cytotoxicity. Molecules, 22(9), 1573. https://doi.org/10.3390/molecules22091573

Chohan, Z. H., Shad, H. A., & Supuran, C. T. (2011). Synthesis, characterization and biological studies of sulfonamide Schiff’s bases and some of their metal derivatives. Journal of Enzyme Inhibition and Medicinal Chemistry, 27(1), 58-68. https://doi.org/10.3109/14756366.2011.574623

Digafie, Z., Melaku, Y., Belay, Z., & Eswaramoorthy, R. (2021). Synthesis, molecular docking analysis, and evaluation of antibacterial and antioxidant properties of stilbenes and Pinacol of quinolines. Advances in Pharmacological and Pharmaceutical Sciences, 2021, 1-17. https://doi.org/10.1155/2021/6635270

Tamene, D., & Endale, M. (2019). Antibacterial activity of coumarins and carbazole alkaloid from roots of Clausena anisata. Advances in Pharmacological Sciences, 2019, 1-8. https://doi.org/10.1155/2019/5419854

Zeleke, D., Eswaramoorthy, R., Belay, Z., & Melaku, Y. (2020). Synthesis and antibacterial, antioxidant, and molecular docking analysis of some novel quinoline derivatives. Journal of Chemistry, 2020, 1-16. https://doi.org/10.1155/2020/1324096

Tadavi, S. K., Bendre, R. S., Patil, S. V., Gaguna, S., & Rajput, J. D. (2020). Synthesis, crystal structures and antimicrobial activity of palladium metal complexes of sulfonyl hydrazone ligands. European Journal of Chemistry, 11(4), 377-384. https://doi.org/10.5155/eurjchem.11.4.377-384.2040

Kuchárová, V., Kuchár, J., Zaric, M., Canovic, P., Arsenijevic, N., Volarevic, V., Misirkic, M., Trajkovic, V., Radojević, I. D., Čomić, L. R., Matik, M., & Potočňák, I. (2019). Low-dimensional compounds containing bioactive ligands. Part XI: Synthesis, structures, spectra, in vitro anti-tumor and antimicrobial activities of 3d metal complexes with 8-hydroxyquinoline-5-sulfonic acid. Inorganica Chimica Acta, 497, 119062. https://doi.org/10.1016/j.ica.2019.119062

Bouone, Y. O., Bouzina, A., & Aouf, N. (2022). Synthesis, molecular docking analysis, ADMET and drug likeness prediction of a Benzenesulfonamide derivative analogue of SLC-0111. ECMC 2022. https://doi.org/10.3390/ecmc2022-13407

Loginova, N., Gvozdev, M., Osipovich, N., Khodosovskaya, A., Koval’chuk-Rabchinskaya, T., Ksendzova, G., Kotsikau, D., & Evtushenkov, A. (2022). Silver(I) complexes with phenolic Schiff bases: Synthesis, anti-bacterial evaluation and interaction with biomolecule s. ADMET and DMPK. https://doi.org/10.5599/admet.1167

Ommenya, F. K., Nyawade, E. A., Andala, D. M., & Kinyua, J. (2020). Synthesis, characterization and antibacterial activity of Schiff base, 4-Chloro-2-{(E)-[(4-Fluorophenyl)imino]methyl}phenol metal (II) complexes. Journal of Chemistry, 2020, 1-8. https://doi.org/10.1155/2020/1745236

Mahmoud, W. H., Deghadi, R. G., & Mohamed, G. G. (2018). Metal complexes of novel Schiff base derived from iron sandwiched organometallic and 4-nitro-1,2-phenylenediamine: Synthesis, characterization, DFT studies, antimicrobial activities and molecular docking. Applied Organometallic Chemistry, 32(4), e4289. https://doi.org/10.1002/aoc.4289

Nazeer M. (2021). IR, UV and CV studies of Schiff base metal complexes derived from o-phenylinediamine with chlorobenzaldehyde. JOURNAL OF ADVANCED APPLIED SCIENTIFIC RESEARCH, 1(9). https://doi.org/10.46947/joaasr19201774

Abdel-Monem, R. A., Khalil, A. M., Darwesh, O. M., Hashim, A. I., & Rabie, S. T. (2019). Antibacterial properties of carboxymethyl chitosan schiff-base nanocomposites loaded with silver nanoparticles. Journal of Macromolecular Science, Part A, 57(2), 145-155. https://doi.org/10.1080/10601325.2019.1674666

Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1). https://doi.org/10.1038/srep42717

Eswaramoorthy, R., Hailekiros, H., Kedir, F., & Endale, M. (2021). In silico molecular docking, DFT analysis and ADMET studies of carbazole alkaloid and coumarins from roots of Clausena anisata: A potent inhibitor for quorum sensing. Advances and Applications in Bioinformatics and Chemistry, 14, 13-24. https://doi.org/10.2147/aabc.s290912

Fekadu, M., Zeleke, D., Abdi, B., Guttula, A., Eswaramoorthy, R., & Melaku, Y. (2022). undefined. BMC Chemistry, 16(1). https://doi.org/10.1186/s13065-022-00795-0

Downloads

Published

2023-12-21

How to Cite

Haruna, A., Sirajo, I. T., Rumah, M. M., & Albashir, Y. (2023). Synthesis, Characterization, Biological Properties, ADMET and Drug-likeness Analysis of Mn (II) complexes with Schiff Bases Derived from Sulphathiazole and 4-diethylaminosalicyaldehyde/Salicyaldehyde. Journal for Research in Applied Sciences and Biotechnology, 2(6), 58–68. https://doi.org/10.55544/jrasb.2.6.10