Effect of the Cold Atmospheric Plasma Technology for Treatment the Cancer Diseases in the Human: A literature Review

Authors

  • Riyam Adnan Hammudi College of Medicine, Wasit University, Wasit -Al Kut 52001, IRAQ.

DOI:

https://doi.org/10.55544/jrasb.2.6.5

Keywords:

cold atmospheric plasma, treatment, non-thermal plasma

Abstract

CAP is a form of plasma with a temperature below 104°F at the application site. There are a variety of techniques for producing CAP, including Atmospheric Pressure Plasma Jet, Dielectric Barrier Discharge, and plasma needle and pencil. Multiple gases can produce CAP, including Helium, Heliox, Nitrogen, Argon, and air. Due to CAP's ability to deactivate organisms, cause cell separation, and kill cancer cells, researchers are interested in identifying dental and oncological applications for the compound. CAP is an ionized gas at 25 Co; it produces ROS and RNS due to several factors such as U.V., ray, heat, and power electric effects. Plasma is a matter at (fourth state) formed at low pressure or high temperature. Often, it is described as an ionized gas produced by the polyatomic fragmentation or the subtraction of electrons from monatomic gas shells. CAP has an antitumor effect. The current study aims to shed light on CAP technology, its definition, types, general applications, and their applications in treating human cancer. CAP was effective in treating cancer and eliminating tumor cells. CAP may have a place in the therapy of cancer. CAP used for cancer therapy has many advantages as a therapeutic method due to its effects of high selectivity, non-toxicity, combination potential, and adaptability. CAP eradicates cancer cells and uses this technique as a clinical therapeutic option that is effective and safe.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Adhikari B.R., Khanal R. Introduction to the Plasma State of Matter. Himal. Phys. 2013;4:60–64. https://doi:10.3126/hj.v4i0.9430.

Amini M.R., Hosseini M.S., Fatollah S., Mirpour S., Ghoranneviss M., Larijani B., Mohajeri-Tehrani M.R., Khorramizadeh M.R. Beneficial Effects of Cold Atmospheric Plasma on Inflammatory Phase of Diabetic Foot Ulcers; a Randomized Clinical Trial. J. Diabetes Metab. Disord. 2020;19:895–905. https://doi:10.1007/s40200-020-00577-2.

Arndt S., Landthaler M., Zimmermann J. L., et al. Effects of cold atmospheric plasma (CAP) on ss-defensins, inflammatory cytokines, and apoptosis-related molecules in keratinocytes in vitro and in vivo. PLoS One . 2015;10, article e0120041 https://doi:10.1371/journal.pone.0120041.

Attri P., Koga K., and Shiratani M., "Possible impact of plasma oxidation on the structure of the C-terminal domain of SARS-CoV-2 spike protein: A computational study," Appl. Phys. Express 14, 027002 (2021). https://10.35848/1882-0786/abd717

Bekeschus S., Schmidt A., Niessner F., Gerling T., Weltmann K. D., Wende K. Basic research in plasma medicine - a throughput approach from liquids to cells. Journal of Visualized Experiments . 2017;(129, article e56331) https://doi:10.3791/56331.

Bernhardt T., Semmler M.L., Schäfer M., Bekeschus S., Emmert S., Boeckmann L. Plasma Medicine: Applications of Cold Atmospheric Pressure Plasma in Dermatology. Oxid. Med. Cell Longev. 2019;2019:3873928. https://doi:10.1155/2019/3873928.

Boeckmann L., Schäfer M., Bernhardt T., Semmler M.L., Jung O., Ojak G., Fischer T., Peters K., Nebe B., Müller-Hilke B., et al. Cold Atmospheric Pressure Plasma in Wound Healing and Cancer Treatment. Appl. Sci. 2020;10:6898. https://doi:10.3390/app10196898.

Borchardt T., Ernst J., Helmke A., Tanyeli M., Schilling A.F., Felmerer G., Viöl W. Effect of Direct Cold Atmospheric Plasma (Dicap) on Microcirculation of Intact Skin in a Controlled Mechanical Environment. Microcirculation. 2017;24:e12399. https://doi:10.1111/micc.12399.

Borges A.C., de Morais Gouvêa Lima G., Nishime T.M.C., Gontijo A.V.L., Kostov K.G., Koga-Ito C.Y. Amplitude-Modulated Cold Atmospheric Pressure Plasma Jet for Treatment of Oral Candidiasis: In Vivo Study. PLoS ONE. 2018;13:e199832. https://doi:10.1371/journal.pone.0199832.

Brandenburg R. Dielectric barrier discharges: progress on plasma sources and on the understanding of regimes and single filaments. Plasma Sources Science and Technology. 2017;26, article 053001 https://doi:10.1088/1361-6595/aa6426.

Braný D, Dvorská D, Halašová E, Škovierová H. Cold Atmospheric Plasma: A Powerful Tool for Modern Medicine. Int J Mol Sci. 2020 Apr 22;21(8):2932. https://doi:10.3390/ijms21082932.

Chen Z., Garcia G., Jr., Arumugaswami V., Wirz R.E. Cold Atmospheric Plasma for SARS-CoV-2 Inactivation. Phys. Fluids. 2020;32:111702. https://doi:10.1063/5.0031332.

Corbella, Carles, Sabine Portal, and Michael Keidar. 2023. "Flexible Cold Atmospheric Plasma Jet Sources" Plasma 6, no. 1: 72-88. https://doi.org/10.3390/plasma6010007

Dai X, Wu J, Lu L, Chen Y. Current Status and Future Trends of Cold Atmospheric Plasma as an Oncotherapy. Biomol Ther (Seoul). 2023 Sep 1;31(5):496-514. https://doi:10.4062/biomolther.2023.027.

Ebert, U., Rafatov, I. R., & Šijacic, D. D. (2007). Structure formation in a DC-driven" barrier" discharge: stability analysis and numerical solutions. In 28th International Conference on Phenomena in Ionized Gases (ICPIG 2007), July 15-20, 2007, Prague, Czech Republic (pp. 990-992). Institute of Physics.

Eisenhauer P., Chernets N., Song Y., Dobrynin D., Pleshko N., Steinbeck M.J., Freeman T.A. Chemical Modification of Extracellular Matrix by Cold Atmospheric Plasma-Generated Reactive Species Affects Chondrogenesis and Bone Formation. J. Tissue Eng. Regen. Med. 2016;10:772–782. https://doi:10.1002/term.2224.

Ercan U.K., Ibiş F., Dikyol C., Horzum N., Karaman O., Yıldırım Ç., Çukur E., Demirci E.A. Prevention of Bacterial Colonization on Nonthermal Atmospheric Plasma Treated Surgical Sutures for Control and Prevention of Surgical Site Infections. PLoS ONE. 2018;13:e0202703. https://doi:10.1371/journal.pone.0202703.

Gan L., Jiang J., Duan J.W., Wu X.J.Z., Zhang S., Duan X.R., Song J.Q., Chen H.X. Cold Atmospheric Plasma Applications in Dermatology: A Systematic Review. J. Biophotonics. 2020;14:e202000415. https://doi:10.1002/jbio.202000415.

Gangemi S, Petrarca C, Tonacci A, Di Gioacchino M, Musolino C, Allegra A. Cold Atmospheric Plasma Targeting Hematological Malignancies: Potentials and Problems of Clinical Translation. Antioxidants (Basel). 2022 Aug 17;11(8):1592. https://doi:10.3390/antiox11081592.

Haertel B., von Woedtke T., Weltmann K.D., Lindequist U. Nonthermal Atmospheric-Pressure Plasma Possible Application in Wound Healing. Biomol. Ther. 2014;22:477–490. https://doi:10.4062/biomolther.2014.105.

Hoffmann C, Berganza C, Zhang J. Cold Atmospheric Plasma: methods of production and application in dentistry and oncology. Med Gas Res. 2013 Oct 1;3(1):21. https://doi:10.1186/2045-9912-3-21.

Iseni S., Zhang S., van Gessel A. F. H., et al. Nitric oxide density distributions in the effluent of an R.F. argon APPJ: effect of gas flow rate and substrate. New Journal of Physics. 2014;16, article 123011 https://doi:10.1088/1367-2630/16/12/123011.

Janča, J. Klıma, M. Slavıček, P. Zajıčková, L. H.F. plasma pencil — new source for plasma surface processing,Surface and Coatings Technology,Volumes 116–119,1999, P: 547-551, https://doi.org/10.1016/S0257-8972(99)00256-X.

Jidenko, N., Bourgeois, E., & Borra, J. P. (2009). Aerosol charge distributions in dielectric barrier discharges. In Proc. of. European Aerosol Conference.

Jin T, Xu Y, Dai C, Zhou X, Xu Q, Wu Z. Cold atmospheric plasma: A non-negligible strategy for viral RNA inactivation to prevent SARS-CoV-2 environmental transmission. AIP Adv. 2021 Aug 10;11(8):085019. https://doi:10.1063/5.0060530.

Joh H. M., Kim S. J., Chung T. H., Leem S. H. Comparison of the characteristics of atmospheric pressure plasma jets using different working gases and applications to plasma-cancer cell interactions. AIP Advances . 2013;3 https://doi:10.1063/1.4823484.

Kannan S., Ali P. S. S., Sheeza A., and Hemalatha K., “COVID-19 (novel coronavirus 2019)—Recent trends,” Eur. Rev. Med. Pharmacol. Sci. 24, 2006 (2020). https://10.26355/eurrev_202002_20378

Khlyustova A., Labay C., Machala Z., Ginebra M.-P., Canal C. Important Parameters in Plasma Jets for the Production of Rons in Liquids for Plasma Medicine: A Brief Review. Front. Chem. Sci. Eng. 2019;13:238–252. https://doi:10.1007/s11705-019-1801-8.

Kogelschatz, Ulrich, Baldur Eliasson, and Walter Egli. From ozone generators to flat television screens: history and future potential of dielectric-barrier discharges. Pure Applied Chemistry, Vol. 71, No. 10, pp. 1819-1828, 1999. Retrieved on 2007-08-05.

Kumari S., Badana A.K., Murali M.G., Shailender G., Malla R. Reactive Oxygen Species: A Key Constituent in Cancer Survival. Biomark Insights. 2018;13:1177271918755391. https://doi:10.1177/1177271918755391.

Kupke LS, Arndt S, Lenzer S, Metz S, Unger P, Zimmermann JL, Bosserhoff AK, Gruber M, Karrer S. Cold Atmospheric Plasma Promotes the Immunoreactivity of Granulocytes In Vitro. Biomolecules. 2021 Jun 17;11(6):902. https://doi:10.3390/biom11060902.

Laroussi, M.; Lu, X. (2005). Room-temperature atmospheric pressure plasma plume for biomedical applications. Applied Physics Letters. AIP Publishing. 87 (11): 113902. https://doi:10.1063/1.2045549.

Laroussi, Mounir; Tendero, Claire; Lu, Xinpei; Alla, Sudhakar; Hynes, Wayne L. (2006). Inactivation of Bacteria by the Plasma Pencil. Plasma Processes and Polymers. Wiley. 3 (6–7): 470–473. https://doi:10.1002/ppap.200600005.

Lee J.-H., Jeong W.-S., Seo S.-J., Kim H.-W., Kim K.-N., Choi E.-H., Kim K.-M. Nonthermal Atmospheric Pressure Plasma Functionalized Dental Implant for Enhancement of Bacterial Resistance and Osseointegration. Dent. Mater. 2017;33:257–270. https://doi:10.1016/j.dental.2016.11.011.

Lis K.A., Kehrenberg C., Boulaaba A., von Köckritz-Blickwede M., Binder S., Li Y., Zimmermann J.L., Pfeifer Y., Ahlfeld B. Inactivation of Multidrug-Resistant Pathogens and Y. Enterocolitica with Cold Atmospheric Pressure Plasma on Stainless Steel Surfaces. Int. J. Antimicrob. Agents. 2018;52:811–818. https://doi:10.1016/j.ijantimicag.2018.08.023.211211

Matsuno, Hiromitsu, Nobuyuki Hishinuma, Kenichi Hirose, Kunio Kasagi, Fumitoshi Takemoto, Yoshinori Aiura, and TatsushiIgarashi. Dielectric barrier discharge lamp, United States Patent 5757132 (Commercial website). https://Freepatentsonline.com. First published 1998-05-26. Retrieved on 2007-08-05.

Motaln H., Recek N., Rogelj B. Intracellular Responses Triggered by Cold Atmospheric Plasma and Plasma-Activated Media in Cancer Cells. Molecules. 2021;26:1336. https://doi:10.3390/molecules26051336.

Murillo D, Huergo C, Gallego B, Rodríguez R, Tornín J. Exploring the Use of Cold Atmospheric Plasma to Overcome Drug Resistance in Cancer. Biomedicines. 2023 Jan 14;11(1):208. https://doi:10.3390/biomedicines11010208.

Nomura Y., Takamatsu T., Kawano H., Miyahara H., Okino A., Yoshida M., Azuma T. Investigation of Blood Coagulation Effect of Nonthermal Multigas Plasma Jet in Vitro and in Vivo. J. Surg. Res. 2017;219:302–309. https://doi:10.1016/j.jss.2017.06.055.

Schmidt-Bleker A., Bansemer R., Reuter S., Weltmann K.-D. How to produce an nox- instead of ox-based chemistry with a cold atmospheric plasma jet. Plasma Processes and Polymers. 2016;13:1120–1127. https://doi:10.1002/ppap.201600062.

Schweigert, I.V., Zakrevsky, D.E., Milakhina, E.V. et al. Characteristics of Cold Atmospheric Plasma Jet when Excited by Sinusoidal and Positive Pulse Voltages for Medical Applications. Plasma Phys. Rep. 49, 595–601 (2023). https://doi.org/10.1134/S1063780X2360010X

Tabares FL, Junkar I. Cold Plasma Systems and their Application in Surface Treatments for Medicine. Molecules. 2021 Mar 28;26(7):1903. https://doi:10.3390/molecules26071903.

Tan F., Fang Y., Zhu L., Al-Rubeai M. Controlling Stem Cell Fate Using Cold Atmospheric Plasma. Stem. Cell Res. Ther. 2020;11:368. https://doi:10.1186/s13287-020-01886-2.

Tan F., Rui X., Xiang X., Yu Z., Al-Rubeai M. Multimodal Treatment Combining Cold Atmospheric Plasma and Acidic Fibroblast Growth Factor for Multi-Tissue Regeneration. FASEB J. 2021;35:e21442. https://doi:10.1096/fj.202002611R.

Tornin J., Labay C., Tampieri F., Ginebra M.-P., Canal C. Evaluation of the Effects of Cold Atmospheric Plasma and Plasma-Treated Liquids in Cancer Cell Cultures. Nat. Protoc. 2021;16:2826–2850. https://doi:10.1038/s41596-021-00521-5.

Viegas, P., Slikboer, E., Bonaventura, Z., Guaitella, O., Sobota, A., & Bourdon, A. (2022). Physics of plasma jets and interaction with surfaces: review on modelling and experiments. Plasma Sources Science and Technology, 31(5), 053001.

Wang, Q., Malyavko, A., Yan, D., Lamanna, O. K., Hsieh, M. H., Sherman, J. H., & Keidar, M. (2020). A comparative study of cold atmospheric plasma treatment, chemical versus physical strategy. Journal of Physics D: Applied Physics, 54(9), 095207.

Won H.-R., Kang S.U., Kim H.J., Jang J.Y., Shin Y.S., Kim C.-H. Nonthermal Plasma Treated Solution with Potential as a Novel Therapeutic Agent for Nasal Mucosa Regeneration. Sci. Rep. 2018;8:13754. https://doi:10.1038/s41598-018-32077-y.

Xiong Z., Zhao S., Yan X. Nerve Stem Cell Differentiation by a One-Step Cold Atmospheric Plasma Treatment in Vitro. J. Vis. Exp. 2019;143:e58663. https://doi:10.3791/58663.

Yan D., Sherman J. H., Keidar M. Cold atmospheric plasma, a novel promising anticancer treatment modality. Oncotarget. 2017; 8:15977–15995. https://doi:10.18632/oncotarget.13304.

Downloads

Published

2023-12-13

How to Cite

Hammudi, R. A. (2023). Effect of the Cold Atmospheric Plasma Technology for Treatment the Cancer Diseases in the Human: A literature Review. Journal for Research in Applied Sciences and Biotechnology, 2(6), 25–31. https://doi.org/10.55544/jrasb.2.6.5