Vitamin B12 Production by Lactobacillus Species Isolated from Milk Products
DOI:
https://doi.org/10.55544/jrasb.1.2.6Keywords:
Vitamin B12, Lactobacillus sp., UV and EMS Mutagenesis, FermentationAbstract
An investigation entitled “Studies on production of Vitamin B12 by Lactobacillus species isolated from milk products” was conducted in the Division of Microbiology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, to study the capability of mutants generated out of UV and EMS mutagens of native Lactobacillus isolates, for Vitamin B12 production potential. In this study 8 isolates of Lactobacillus were isolated from curd and kaladi. Screening and Quantification of isolates was done on Vitamin B12 assay medium. The Vitamin B12 production by Lb-7 was 0.39 mg/g DCW. Lb-7, the fastest growing strain was selected for strain improvement, that was done by UV and EMS mutagens. Based on performance during screening, UV mutant was taken up for fermentation optimisation studies. The Vitamin B12 production by UV mutant was 0.63mg/g DCW. Three fermentation parameters i.e temperature, pH and inoculum load were optimized for mutant to enhance Vitamin B12 production. The Vitamin B12 production at 25°C was 2.05 mg/g DCW, 5.5 pH was 1.55mg/g DCW and 108 inoculum load was 1.53mg/g DCW. Best results were recorded at 25°C, 5.5 pH and 108 cfu/ml of microbial load. An increase in temperature, pH and inoculum load caused decrease in Vitamin B12 production due to death of cells.
Downloads
Metrics
References
Abdelsalam, IS. 2018.Production of Vitamin B12 and Folate Using a Potent Mutant Strain of Klebsiella pneumonia. Egyptian Journal of Chemistry, 6 (1):93-100.
Abou-Taleb Khadiga, A.A., Mashhoor, W.A., Sohair, A.N. and Sharaf, M.S. 2005. Production of vitamin B12 by Propionibacterium freudenreichii and Bacillus megaterium. J. Agric. Sci., Mansoura University, Egypt ,30 (7); 4149-4162.
Aburjaile, F. F., Madec, M. N., Parayre, S., Miyoshi, A., Azevedo, V. and Le Loir, Y. 2016. The long-term survival of Propionibacterium freudenreichii in a context of nutrient shortage. Journal of Applied Microbiology, 120: 432–440.
Acevedo-Rocha, C.G., Gronenberg, L.S., Mack, M., Commichau, F.M. and Genee, H.J. 2019. Microbial cell factories for the sustainable manufacturing of B vitamins. Current opinion in biotechnology, 56: 18-29.
Ali, M.N. and Mohd, M.K. 2011. Enhancement in vitamin B12 production by mutant strains of Propionibacterium freudenreichii. Int J Eng Sci, .3: 4921-4925.
Allen, L.H. 2008. Causes of vitamin B12 and folate deficiency. Food Nutr. Bull, 29: S20–S37.
Balabanova, L., Averianova, L., Marchenok, M., Son, O. and Tekutyeva, L. 2021. Microbial and genetic resources for cobalamin (vitamin B12) biosynthesis: from ecosystems to industrial biotechnology. International Journal of Molecular Sciences, 22(9):4522.
Bao, X., Xiang, S., Chen, J., Shi, Y., Chen, Y., Wang, H. and Zhu, X. 2019. Effect of Lactobacillus reuteri on vitamin B12 content and microbiota composition of furu fermentation. LWT, 100: 138-143.
Bathlonew, J.W.1962. Variables influencing results and precise definition steps Gram staining as a means of standardising the results obtained. Stain technology,37:139-155.
Bhushan, B., Tomar, S.K. and Chauhan, A. 2017. Techno-functional differentiation of two vitamin B 12 producing Lactobacillus plantarum strains: an elucidation for diverse future use. Applied microbiology and biotechnology, 101(2): 697-709.
Biedendieck, R., Malten, M., Barg, H., Bunk, B., Martens, J.H., Deery, E., Leech, H., Warren, M.J. and Jahn, D. 2010. Metabolic engineering of cobalamin (vitamin B12) production in Bacillus megaterium. Microbial biotechnology. 3(1):24-37.
Bolotin, A., Quinquis, B., Renault, P., Sorokin, A., Ehrlich, S.D., Kulakauskas, S., Lapidus, A., Goltsman, E., Mazur, M., Pusch, G.D. and Fonstein, M. 2004. Complete sequence and comparative genome analysis of the dairy bacterium Streptococcus thermophilus. Nature biotechnology, 22(12):1554-1558.
Bridwell-Rabb, J. and Drennan, C.L. 2017. Vitamin B12 in the spotlight again. Current opinion in chemical biology, 37 :63-70.
Bryant, D.A., Hunter, C.N. and Warren, M.J. 2020. Biosynthesis of the modified tetrapyrroles—the pigments of life. Journal of Biological Chemistry. 295(20):6888-6925.
Burgess, CM., Smid, EJ. and Van, Sinderen D. 2009. Bacterial vitamin B2, B11 and B12 overproduction: an overview. International journal of food microbiology, 133(1-2):1-7.
Cai, Y., Xia, M., Dong, H., Qian, Y., Zhang, T., Zhu, B., Wu, J. and Zhang, D. 2018. Engineering a vitamin B 12 high-throughput screening system by riboswitch sensor in Sinorhizobium meliloti. BMC biotechnology, 18 (1): 1-11.
Chamlagain, B., Sugito, T.A., Deptula, P., Edelmann, M., Kariluoto, S., Varmanen, P. and Piironen, V. 2018. In situ production of active vitamin B12 in cereal matrices using Propionibacterium freudenreichii. Food science & nutrition, 6(1) :67-76.
Dalmasso, M., Aubert, J., Even, S., Falentin, H., Maillard, M.B. and Parayre, S. 2012. Accumulation of intracellular glycogen and trehalose by Propionibacterium freudenreichii under conditions mimicking cheese ripening in the cold. Applied and Environmental Microbiology, 78: 6357–6364.
Danchin, A. and Braham, S., 2017. Coenzyme B12 synthesis as a baseline to study metabolite contribution of animal microbiota. Microbial biotechnology,10(4): 688-701.
De Angelis, M., Bottacini, F., Fosso, B., Kelleher, P., Calasso, M., Di Cagno, R., Ventura, M., Picardi, E., van Sinderen, D. and Gobbetti, M. 2014. Lactobacillus rossiae, a vitamin B12 producer, represents a metabolically versatile species within the genus Lactobacillus. PloS one, 9(9): 107232.
Deptula, P., Kylli, P., Chamlagain, B., Holm, L., Kostiainen, R., Piironen, V., Savijoki, K. And Varmanen, P. 2015. BluB/CobT2 fusion enzyme activity reveals mechanisms responsible for production of active form of vitamin B 12 by Propionibacterium freudenreichii. Microbial cell factories, 14(1):1-12.
Derin, S., Koseoglu, S., Sahin, C. and Sahan, M. 2016. Effect of vitamin B12 deficiency on olfactory function. In International forum of allergy, 10 :1051-1055.
Dong, H., Li, S., Fang, H., Xia, M., Zheng, P., Zhang, D. and Sun, J. 2016. A newly isolated and identified vitamin B 12 producing strain: Sinorhizobium meliloti 320. Bioprocess and Biosystems Engineering, 39(10):1527-37.
Dos Santos, F.B. 2008. Vitamin B12 synthesis in Lactobacillus reuteri.
Elías-Arnanz, M. 2020. Anaerobic bacteria need their vitamin B12 to digest estrogen. Proceedings of the National Academy of Sciences, 117: 1833–1835.
Fakruddin, MD., Hossain, MN. and Ahmed, MM. 2017 Antimicrobial and antioxidant activities of Saccharomyces cerevisiae IFST062013, a potential probiotic. BMC Complementary and Alternative Medicine, 17(1):64.
Falentin, H., Deutsch, S. M., Jan, G., Loux, V., Thierry, A. and Parayre, S. 2010. The complete genome of Propionibacterium freudenreichii CIRM-BIA1T, a hardy Actinobacterium with food and probiotic applications. PloS one, 5: e11748.
Fang, H., Kang, J. and Zhang, D. 2017. Microbial production of Vitamin B 12: a review and future perspectives. Microbial cell factories, 16(1):1-14.
Fowler, B., Baumgartner, M.R. 2019. Vitamin B12, folate, and the methionine remethylation cycle—biochemistry, pathways, and regulation. J. Inherit. Metab. Dis, 42: 673–685.
Frischkorn, K.R., Haley, S.T. and Dyhrman, S.T. 2018. Coordinated gene expression between Trichodesmium and its microbiome over day–night cycles in the North Pacific Subtropical Gyre. The ISME journal, 12(4): 997-1007.
Froese, D.S., Fowler, B. and Baumgartner, M.R. 2019. Vitamin B12, folate, and the methionine remethylation cycle—biochemistry, pathways, and regulation. Journal of inherited metabolic disease, 42(4) :6 73-685.
Gherasim, C., Lofgren, M. and Banerjee, R 2013. Navigating the B (12) road: assimilation, delivery, and disorders of cobalamin. J Biol Chem,288(19):13186–13193.
Green, R. 2009. Is it time for vitamin B-12 fortification? What are the questions? The American Journal of Clinical Nutrition, 89(2): 712S-716S.
Guo, M. and Chen, Y. 2018. Coenzyme cobalamin: biosynthesis, overproduction and its application in dehalogenation—a review. Reviews in Environmental Science and Bio/Technology, 17(2):259-284.
Hajfarajollah, H., Mokhtarani, B., Mortaheb, H. and Afaghi, A. 2015. Vitamin B 12 biosynthesis over waste frying sunflower oil as a cost effective and renewable substrate. Journal of food science and technology, 52(6):3273-3282.
Hati, S., Patel, M., Mishra, B.K. and Das, S. 2019. Short-chain fatty acid and vitamin production potentials of Lactobacillus isolated from fermented foods of Khasi Tribes, Meghalaya, India. Annals of microbiology, 69(11):1191-1199.
Heal, K.R., Qin, W., Ribalet, F., Bertagnolli, A.D., Coyote-Maestas, W., Hmelo, L.R., Moffett, J.W., Devol, A.H., Armbrust, E.V., Stahl, D.A. and Ingalls, A.E. 2017. Two distinct pools of B12 analogs reveal community interdependencies in the ocean. Proceedings of the National Academy of Sciences, 114(2) :364-369.
Hedayati, R., Hosseini, M., and Najafpour, GD.2020. Optimization of semi-anaerobic vitamin B12 (cyanocobalamin) production from rice bran oil using Propionibacterium freudenreichii PTCC1674. Bio catalysis and Agricultural Biotechnology, 23:101444.
Hugenholtz, J. and Smid, E.J. 2002. Nutraceutical production with food-grade microorganisms. Current Opinion in Biotechnology, 13(5):497-507.
Hugenschmidt, S., Schwenninger, S.M., Gnehm, N. and Lacroix, C. 2010. Screening of a natural biodiversity of lactic and propionic acid bacteria for folate and vitamin B12 production in supplemented whey permeate. International dairy journal, 20(12):852-857.
Issac, T.G., Soundarya, S., Christopher, R. and Chandra, S.R. 2015. Vitamin B12 deficiency: an important reversible co-morbidity in neuropsychiatric manifestations. Indian journal of psychological medicine, 37(1): 26-29.
Jajodia, S., Mehta, M. and Shah, G. 2017. Isolation and Identification of Microbial Flora Efficient in Vitamin B12.
Jalilian, N., Najafpour, G.D. and Khajouei, M. 2019. Enhanced vitamin B12 production using Chlorella vulgaris. International Journal of Engineering,32(1):1-9.
Jessy & Trevor 2010. A rapid HPLC method for the extraction and Quantification of vitamin B 12 in dairy products and cultures Propionibacterium freudenreichii Dairy Sci. Technol, 90: 509–520.
Joglar, V., Álvarez‐Salgado, X.A., Gago‐Martinez, A., Leao, J.M., Pérez‐Martínez, C., Pontiller, B., Lundin, D., Pinhassi, J., Fernández, E. and Teira, E. 2021. Cobalamin and microbial plankton dynamics along a coastal to offshore transect in the Eastern North Atlantic Ocean. Environmental Microbiology, 23(3):1559-1583.
Jugder, B.E., Ertan, H., Bohl, S., Lee, M., Marquis, C.P. and Manefield, M. 2016. Organohalide respiring bacteria and reductive dehalogenases: key tools in organohalide bioremediation. Frontiers in microbiology, 7 :249.
Kaneko, T., Mori, H., Iwata, M. and Meguro, S. 1994. Growth stimulator for bifidobacteria produced by Propionibacterium freudenreichii and several intestinal bacteria. J. Dairy Sci,77: 393–404.
Khan, MM., Mir, NA. and Khan, MM. 2011. Production of vitamin B12 by improved strains of Propionibacterium freudenreichii Biotechnol Bioinf Bioeng, 1:19-24.
Khare, A. and Gaur, S. 2020. Cholesterol-lowering effects of Lactobacillus species. Current microbiology ,77(4):638-644.
Khosravi-Darani, K., Zarean, S., Ahmadi, N., Hadian, Z. and Mortazavian, A.M. 2019. Fed-Batch Production of a Fermented Beverage Containing Vitamin B12. Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 38(2):183-192.
Kim, J., Hannibal, L. and Gherasim. C. 2009. A human vitamin B12 trafficking protein uses glutathione transferase activity for processing alkylcobalamins. J Biol Chem, 284(48):33418–33424.
Kustyawati, M.E., Murhadi, M. and Rizal, S. 2020. Vitamin B12 production in soybean fermentation for tempeh. AIMS Agriculture and Food,5(2): 262-271.
Lawrence, A.D., Nemoto-Smith, E., Deery, E., Baker, J.A., Schroeder, S., Brown, D.G., Tullet, J.M., Howard, M.J., Brown, I.R., Smith A.G. and Boshoff, H.I. 2018. Construction of fluorescent analogs to follow the uptake and distribution of cobalamin (vitamin B12) in bacteria, worms, and plants. Cell chemical biology, 25(8) :941-951.
LeBlanc, J.G., Laiño, J.E., del Valle, M.J., Vannini, V.V., van Sinderen, D., Taranto, M.P., de Valdez, G.F., de Giori, G.S. and Sesma, F. 2011. B‐Group vitamin production by lactic acid bacteria–current knowledge and potential applications. Journal of applied microbiology, 111(6): 1297-1309.
Li, K.T., Liu, D.H., Zhuang, Y.P., Wang, Y.H., Chu, J. and Zhang, S.L. 2008. Influence of Zn 2+, Co 2+ and dimethylbenzimidazole on vitamin B 12 biosynthesis by Pseudomonas denitrificans. World Journal of Microbiology and Biotechnology, 24(11):2525-2530.
Li, P., Gu, Q., Yang, L., Yu, Y. and Wang, Y. 2017. Characterization of extracellular vitamin B12 producing Lactobacillus plantarum strains and assessment of the probiotic potentials. Food chemistry, 234 :494-501.
Linares, D.M., Gómez, C., Renes, E., Fresno, J.M., Tornadijo, M.E., Ross, R.P. and Stanton, C. 2017. Lactic acid bacteria and Bifidobacteria with potential to design natural biofunctional health-promoting dairy foods. Frontiers in microbiology, 8: 846.
Lu, X., Heal, K.R., Ingalls, A.E., Doxey, A.C. and Neufeld, J.D. 2020. Metagenomic and chemical characterization of soil cobalamin production. The ISME journal, 14(1): 53-66.
Ly, D., Mayrhofer, S., Agung Yogeswara, I.B., Nguyen, T.H. and Domig, K.J. 2019. Identification, classification and screening for γ-amino-butyric acid production in lactic acid bacteria from cambodian fermented foods. Biomolecules,9(12): 768.
Magnúsdóttir, S., Ravcheev, D., de Crécy-Lagard, V. and Thiele, I. 2015. Systematic genome assessment of B-vitamin biosynthesis suggests co-operation among gut microbes. Frontiers in genetics, 6 :148.
Mantere-Alhonen, S. 1995. Propionibacteria used as probiotics-A review. Le Lait, 75: 447–452.
Martens, J. H., Barg, H., Warren, M. J. and Jahn, D. 2002. Microbial production of vitamin B12. Applied Microbiology and Biotechnology, 58: 275–285.
Massoud, R., Khosravi-Darani, K., Golshahi, M., Sohrabvandi, S. and Mortazavian, A.M. 2020. Assessment of Process Variables on Vitamin B12 Production in Fermented Dairy Product Including Propionic Acid. Current Nutrition & Food Science, 16(2): 155-161.
Masuda, M., Ide, M., Utsumi, H., Niiro, T., Shimamura, Y. and Murata, M. 2012. Production potency of folate, vitamin B12, and thiamine by Lactic acid bacteria isolated from Japanese pickles. Bioscience, biotechnology, and biochemistry, 76(11) :2061-2067.
Mohammed, Y., Lee, B., Kang, Z. and Du, G. 2014a. Capability of Lactobacillus reuteri to produce an active form of vitamin B12 under optimized fermentation conditions. J Acad Indust Res, 2: 617-21.
Mohammed, Y., Lee, B., Kang, Z. And Du, G. 2014b. Development of a two-step cultivation strategy for the production of vitamin B12 by Bacillus megaterium. Microbial cell factories, 13(1) :1-10.
Pawlak, R. 2015. Is vitamin B12 deficiency a risk factor for cardiovascular disease 548 in vegetarians? American Journal of Preventive Medicine, 48(6): e11-26.
Pereira, J., Simões, M. and Silva, J.L. 2019. Microalgal assimilation of vitamin B12 toward the production of a superfood. Journal of food biochemistry, 43(8): p.e 12911.
Piao, Y., Yamashita, M., Kawaraichi, N., Asegawa, R., Ono, H. and Murooka, Y., 2004. Production of vitamin B12 in genetically engineered Propionibacterium freudenreichii. Journal of bioscience and bioengineering, 98(3) :167-173.
Piwowarek, K., Lipińska, E., Hać-Szymańczuk, E., Kieliszek, M. and Ścibisz, I. 2018. Propionibacterium spp.—source of propionic acid, vitamin B12, and other metabolites important for the industry. Applied microbiology and biotechnology, 102(2): 515-538.
Qiang l., Yumei, l., Sheng, H., Yingzi, l and Dong Xue, S.2013.Optimization of Fermentation conditions and properties of an exopolysaccharides from klebsiella sp.H207 and application in adsorption of hexavalent chromium PloS one ,8 (1), p.e 53542.
Randaccio, L., Geremia, S., Demitri, N. and Wuerges, J., 2010. Vitamin B12: unique metalorganic compounds and the most complex vitamins. Molecules, 15(5) :3228-3259.
Rempel, S., Colucci, E., de Gier, J.W., Guskov, A. and Slotboom, D.J. 2018. Cysteine-mediated decyanation of vitamin B12 by the predicted membrane transporter BtuM. Nature communications, 9(1) :1-8.
Rizzo, G. and Laganà, A.S. 2020. A review of vitamin B12. Molecular Nutrition, 105-129.
Rizzo, G., Laganà, A.S., Rapisarda, A.M.C., Ferrera, L., Grazia, G.M., Buscema, M., Rossetti, P., Nigro, A., Muscia, V., Valenti, G. and Sapia, F. 2016. Vitamin B12 among vegetarians: status, assessment and supplementation. Nutrients, 8(12) :767.
Rodionov, D.A., Arzamasov, A.A., Khoroshkin, M.S., Iablokov, S.N., Leyn, S.A., Peterson, S.N., Novichkov, P.S. and Osterman, A.L. 2019. Micronutrient requirements and sharing capabilities of the human gut microbiome. Frontiers in microbiology, 10 :1316.
Romine, M.F., Rodionov, D.A., Maezato, Y., Anderson, L.N., Nandhikonda, P., Rodionova, I.A., Carre, A., Li, X., Xu, C., Clauss, T.R. and Kim, Y.M. 2017. Elucidation of roles for vitamin B12 in regulation of folate, ubiquinone, and methionine metabolism. Proceedings of the National Academy of Sciences, 114(7): E1205-E1214.
Rucker, R.B., Suttie, J.W., McCormick, D.B. and Machlin L.T.2001. Handbook of Vitmains.
Rucker, R.B., Zempleni, J., Suttie, J.W. and McCormick, D.B. 2007. Handbook of vitamins. Crc Press.
Santos, F., Spinler, J.K., Saulnier, D.M., Molenaar, D., Teusink, B., de Vos, W.M., Versalovic, J. And Hugenholtz, J. 2011. Functional identification in Lactobacillus reuteri of a PocR-like transcription factor regulating glycerol utilization and vitamin B 12 synthesis. Microbial cell factories, 10(1) :1-11.
Scott J.M. 1997. Bioavailability of vitamin B12. European Journal of Clinical Nutrition, 51: S49–53.
Selvakumar, P., Balamurugan, G. and Viveka, S. 2012. Microbial production of Vitamin B12 and antimicrobial activity of glucose utilizing marine derived Streptomyces species. International Journal of Chem Tech Res ,4 (3): 236-242
Shelton, A.N., Seth, E.C., Mok, K.C., Han, A.W., Jackson, S.N., Haft, D.R. and Taga, M.E. 2019. Uneven distribution of cobamide biosynthesis and dependence in bacteria predicted by comparative genomics. The ISME journal, 13(3): 789-804.
Shi, L., Xu, Y., Zhan, L., Xiang, S., Zhu, X., Wang, X. and Tian, S. 2018. Enhancing vitamin B12 content in co-fermented soy-milk via a Lotka Volterra model. Turkish Journal of Biochemistry, 43(6): 671-678.
Signorini, C., Carpen, A., Coletto, L., Borgonovo, G., Galanti, E., Capraro, J., Magni, C., Abate, A., Johnson, S.K., Duranti, M. and Scarafoni, A. 2018. Enhanced vitamin B12 production in an innovative lupin tempeh is due to synergic effects of Rhizopus and Propionibacterium in cofermentation. International journal of food sciences and nutrition, 69(4) :451-457.
Smith, A.D., Warren, M.J. and Refsum, H. 2018. Vitamin B12. Advances in food and nutrition research, 83: 215-279.
Sobczyńska-Malefora, A., Delvin, E., McCaddon, A., Ahmadi, K.R. and Harrington, D.J. 2021. Vitamin B12 status in health and disease: a critical review. Diagnosis of deficiency and insufficiency–clinical and laboratory pitfalls. Critical Reviews in Clinical Laboratory, 1:3.
Talarico, T.L., Casas, I.A., Chung, T.C. and Dobrogosz, W.J. 1988. Production and isolation of reuterin, a growth inhibitor produced by Lactobacillus reuteri. Antimicrobial agents and chemotherapy, 32(12): 1854-1858.
Tanaka, Y., Kasahara, K., Izawa, M. and Ochi, K. 2017. Applicability of ribosome engineering to vitamin B12 production by Propionibacterium shermanii. Bioscience, biotechnology, and biochemistry, 81(8): 1636-1641.
Taranto, M.P., Vera, J.L., Hugenholtz, J., De Valdez, G.F. and Sesma, F. 2003. Lactobacillus reuteri CRL1098 produces cobalamin. Journal of bacteriology, 185(18): 5643-5647.
Thierry, A., Deutsch, S. M., Falentin, H., Dalmasso, M., Cousin, F. J. and Jan, G. 2011. New insights into physiology and metabolism of Propionibacterium freudenreichii International Journal of Food Microbiology, 149: 19–27.
Turło, J., Gutkowska, B., Herold, F.R.A.N.C.I.S.Z.E.K., Krzyczkowski, W.O.J.C.I.E.C.H., Błażewicz, A. and Kocjan, R.Y.S.Z.A.R.D. 2008. Optimizing vitamin B12 biosynthesis by mycelial cultures of Lentinula edodes (Berk.) Pegl. Enzyme and Microbial Technology, 43(4-5) :369-374.
Van Hylckama Vlieg, J.E., Rademaker, J.L., Bachmann, H., Molenaar, D., Kelly, W.J. and Siezen, R.J. 2006. Natural diversity and adaptive responses of Lactococcus lactis. Current opinion in biotechnology,17(2): 183-190.
Vaughan, E.E., de Vries, M.C., Zoetendal, E.G., Ben-Amor, K., Akkermans, A.D. and de Vos, W.M. 2002. The intestinal LABs. Lactic Acid Bacteria: Genetics Metabolism and Applications, 341-352.
Walworth, N.G., Lee, M.D., Suffridge, C., Qu, P., Fu, F.X., Saito, M.A., Webb, E.A., Sañudo-Wilhelmy, S.A. and Hutchins, D.A. 2018. Functional genomics and phylogenetic evidence suggest genus-wide cobalamin production by the globally distributed marine nitrogen fixer Trichodesmium. Frontiers in microbiology, 9: 189.
Wang, P., Shen, C., Li, L., Guo, J., Cong, Q. and Lu, J. 2020. Simultaneous production of propionic acid and vitamin B12 from corn stalk hydrolysates by Propionibacterium freudenreichii in an expanded bed adsorption bioreactor. Preparative biochemistry & biotechnology, 50(8):763-767.
Wang, P., Wang, Y., Liu, Y., Shi, H. and Su, Z. 2012. Novel in situ product removal technique for simultaneous production of propionic acid and vitamin B12 by expanded bed adsorption bioreactor. Bioresource Technology,104 :652-659.
Wang, Z.J., Wang, H.Y., Li, Y.L., Chu, J., Huang, M.Z., Zhuang, Y.P. and Zhang, S.L. 2010. Improved vitamin B12 production by step-wise reduction of oxygen uptake rate under dissolved oxygen limiting level during fermentation process. Bioresource technology,101 (8): 2845-2852.
Watanabe, F. And Miyamoto, E. 2003. Hydrophilic vitamins. In Handbook of Thin-Layer Chromatography, 794-816.
Watanabe, F., Yabuta, Y., Tanioka, Y. and Bito, T. 2013. Biologically active vitamin B12 compounds in foods for preventing deficiency among vegetarians and elderly subjects. Journal of Agricultural and Food Chemistry, 61(28): 599 6769-6775.
Wolkers-Rooijackers, J. C. M., Endika, M. F. and Smid, E. J. 2018. Enhancing vitamin B 12 in lupin tempeh by in situ fortification. Lwt, 96: 513–518.
Xia, W., Chen, W., Peng, W.F. and Li, K.T. 2015. Industrial vitamin B 12 production by Pseudomonas denitrificans using maltose syrup and corn steep liquor as the cost-effective fermentation substrates. Bioprocess and biosystems engineering, 38(6): 1065-1073.
Xie, C., Coda, R., Chamlagain, B., Varmanen, P., Piironen, V. and Katina, K. 2019. Co-fermentation of Propionibacterium freudenreichii and Lactobacillus brevis in Wheat Bran for in situ Production of Vitamin B12. Frontiers in microbiology,10:1541.
Xu, Y., Xiang, S., Ye, K., Zheng, Y., Feng, X., Zhu, X., Chen, J. and Chen, Y. 2018. Cobalamin (vitamin B12) induced a shift in microbial composition and metabolic activity in an in vitro colon simulation. Frontiers in microbiology, 9 :2780.
Yu, Y., Zhu, X., Shen, Y., Yao, H., Wang, P., Ye, K., Wang, X. and Gu, Q. 2015. Enhancing the vitamin B12 production and growth of Propionibacterium freudenreichii in tofu wastewater via a light-induced vitamin B12 riboswitch. Applied microbiology and biotechnology, 99(24): 10481-10488.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Brajeshwar Singh, Shruti Sharma
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.