S. cerevisiae Bio-Ethanol Production as a Sustainable Energy Source

Authors

  • Ajay Srivastava Department of Biotechnology, Arni University, Himanchal Pradesh, INDIA.
  • Nishu Doley Department of Biotechnology, Arni University, Himanchal Pradesh, INDIA.

DOI:

https://doi.org/10.55544/jrasb.1.1.2

Keywords:

S. cerevisiae, Bio-Ethanol, fossil fuels, renewable energy, biofuels

Abstract

We rely on fossil fuels, which will be outdated in a few decades. Many people are looking for solutions to the current energy dilemma in renewable energy, notably biofuels. Among the various biofuels, bioethanol looks to be the most cost- So Saccharomyces cerevisiae is a well-known bioethanol producer. Yeast cells are stressed and inhibited during fermentation, limiting their efficiency for commercial bioethanol generation. Adopt alternative signal transduction mechanisms to defeat these yeast cells. This analysis focuses on common and underutilised carbon feedstocks that can be easily transformed into bioethanol. The several types of protectants, genes, and processes that may be used to design yeast strains are addressed. As a result, we've proposed techniques for using this profitable option for long-term bioethanol production.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Bai, F. W., Chen, L. J., Zhang, Z., Anderson, W. A., & Moo-Young, M. (2004). Continuous ethanol production and evaluation of yeast cell lysis and viability loss under very high gravity medium conditions. Journal of Biotechnology, 110(3), 287–293. https://doi.org/10.1016/j.jbiotec.2004.01.017

Cartwright, C. P., juroszek, J.-R., Beavan, M. J., Ruby, F. M. S., De Morais, S. M. F., & Rose, A. H. (1986). Ethanol Dissipates the Proton-motive Force across the Plasma Membrane of Saccharomyces cerevisiae. Microbiology, 132(2), 369–377. https://doi.org/10.1099/00221287-132-2-369

Cheng, J. J., & Timilsina, G. R. (2011). Status and barriers of advanced biofuel technologies: A review. Renewable Energy, 36(12), 3541–3549. https://doi.org/10.1016/j.renene.2011.04.031

Cheng, Y., Du, Z., Zhu, H., Guo, X., & He, X. (2016). Protective Effects of Arginine on Saccharomyces cerevisiae Against Ethanol Stress. Scientific Reports, 6(1), 31311. https://doi.org/10.1038/srep31311

Gasch, A. P., & Werner-Washburne, M. (2002). The genomics of yeast responses to environmental stress and starvation. Functional & Integrative Genomics, 2(4–5), 181–192. https://doi.org/10.1007/s10142-002-0058-2

Godfray, H. C. J., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., Nisbett, N., Pretty, J., Robinson, S., Toulmin, C., & Whiteley, R. (2010). The future of the global food system. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1554), 2769–2777. https://doi.org/10.1098/rstb.2010.0180

Guimarães, P. M. R., Teixeira, J. A., & Domingues, L. (2008). Fermentation of high concentrations of lactose to ethanol by engineered flocculent Saccharomyces cerevisiae. Biotechnology Letters, 30(11), 1953–1958. https://doi.org/10.1007/s10529-008-9779-1

Han, S.-F., Jin, W.-B., Tu, R.-J., & Wu, W.-M. (2015). Biofuel production from microalgae as feedstock: Current status and potential. Critical Reviews in Biotechnology, 35(2), 255–268. https://doi.org/10.3109/07388551.2013.835301

Ibeas, J. I., & Jimenez, J. (1997). Mitochondrial DNA loss caused by ethanol in Saccharomyces flor yeasts. Applied and Environmental Microbiology, 63(1), 7–12. https://doi.org/10.1128/AEM.63.1.7-12.1997

Inoue, T., Iefuji, H., Fujii, T., Soga, H., & Satoh, K. (2000). Cloning and Characterization of a Gene Complementing the Mutation of an Ethanol-sensitive Mutant of Sake Yeast. Bioscience, Biotechnology, and Biochemistry, 64(2), 229–236. https://doi.org/10.1271/bbb.64.229

Jeffries, T. (1985). Emerging technology for fermenting -xylose. Trends in Biotechnology, 3(8), 208–212. https://doi.org/10.1016/0167-7799(85)90048-4

Jeffries, T. W., Grigoriev, I. V., Grimwood, J., Laplaza, J. M., Aerts, A., Salamov, A., Schmutz, J., Lindquist, E., Dehal, P., Shapiro, H., Jin, Y.-S., Passoth, V., & Richardson, P. M. (2007). Genome sequence of the lignocellulose-bioconverting and xylose-fermenting yeast Pichia stipitis. Nature Biotechnology, 25(3), 319–326. https://doi.org/10.1038/nbt1290

Klimacek, M., Kirl, E., Krahulec, S., Longus, K., Novy, V., & Nidetzky, B. (2014). Stepwise metabolic adaption from pure metabolization to balanced anaerobic growth on xylose explored for recombinant Saccharomyces cerevisiae. Microbial Cell Factories, 13(1), 37. https://doi.org/10.1186/1475-2859-13-37

Klis, F. M., Boorsma, A., & De Groot, P. W. J. (2006). Cell wall construction inSaccharomyces cerevisiae. Yeast, 23(3), 185–202. https://doi.org/10.1002/yea.1349

Konishi, J., Fukuda, A., Mutaguchi, K., & Uemura, T. (2015). Xylose fermentation by Saccharomyces cerevisiae using endogenous xylose-assimilating genes. Biotechnology Letters, 37(8), 1623–1630. https://doi.org/10.1007/s10529-015-1840-2

Kumar, P., Barrett, D. M., Delwiche, M. J., & Stroeve, P. (2009). Methods for Pretreatment of Lignocellulosic Biomass for Efficient Hydrolysis and Biofuel Production. Industrial & Engineering Chemistry Research, 48(8), 3713–3729. https://doi.org/10.1021/ie801542g

Lam, F. H., Ghaderi, A., Fink, G. R., & Stephanopoulos, G. (2014). Engineering alcohol tolerance in yeast. Science, 346(6205), 71–75. https://doi.org/10.1126/science.1257859

Le Borgne, S. (2012). Genetic Engineering of Industrial Strains of Saccharomyces cerevisiae. In A. Lorence (Ed.), Recombinant Gene Expression (Vol. 824, pp. 451–465). Humana Press. https://doi.org/10.1007/978-1-61779-433-9_24

Lee, D. H. (2011). Algal biodiesel economy and competition among bio-fuels. Bioresource Technology, 102(1), 43–49. https://doi.org/10.1016/j.biortech.2010.06.034

Lucero, P., Peñalver, E., Moreno, E., & Lagunas, R. (2000). Internal Trehalose Protects Endocytosis from Inhibition by Ethanol in Saccharomyces cerevisiae. Applied and Environmental Microbiology, 66(10), 4456–4461. https://doi.org/10.1128/AEM.66.10.4456-4461.2000

Mishra, P., & Prasad, R. (1989). Relationship between ethanol tolerance and fatty acyl composition of Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 30(3). https://doi.org/10.1007/BF00256221

Ostergaard, S., Olsson, L., Johnston, M., & Nielsen, J. (2000). Increasing galactose consumption by Saccharomyces cerevisiae through metabolic engineering of the GAL gene regulatory network. Nature Biotechnology, 18(12), 1283–1286. https://doi.org/10.1038/82400

Puria, R., Mannan, M. A., Chopra-Dewasthaly, R., & Ganesan, K. (2009). Critical role of RPI1 in the stress tolerance of yeast during ethanolic fermentation. FEMS Yeast Research, 9(8), 1161–1171. https://doi.org/10.1111/j.1567-1364.2009.00549.x

Naik, S. N., Goud, V. V., Rout, P. K., & Dalai, A. K. (2010). Production of first and second generation biofuels: A comprehensive review. Renewable and Sustainable Energy Reviews, 14(2), 578–597. https://doi.org/10.1016/j.rser.2009.10.003

Stanley, D., Bandara, A., Fraser, S., Chambers, P. J., & Stanley, G. A. (2010). The ethanol stress response and ethanol tolerance of Saccharomyces cerevisiae. Journal of Applied Microbiology. https://doi.org/10.1111/j.1365-2672.2009.04657.x

Published

2022-04-30

How to Cite

Srivastava, A., & Doley, N. (2022). S. cerevisiae Bio-Ethanol Production as a Sustainable Energy Source. Journal for Research in Applied Sciences and Biotechnology, 1(1), 7–11. https://doi.org/10.55544/jrasb.1.1.2

Issue

Section

Articles