Multidrug-Resistant Salmonella spp. Isolated from Local Food Markets: Molecular Factors

Authors

  • E. A. Magthab Department of Medical Laboratory Techniques, College of Health and Medical Techniques, Northern Technical University, Kirkuk, IRAQ.
  • Asmaa M. S. Al-Bayati Department of Medical Laboratory Techniques, College of Health and Medical Techniques, Northern Technical University, Kirkuk, IRAQ.

DOI:

https://doi.org/10.55544/jrasb.2.2.18

Keywords:

Antibiotic-resistance, Salmonella, foodborne, prevalence

Abstract

Antibiotic-resistant Salmonella spp. linked with food remains a primary concern globally as it is associated between animals and humans, causing foodborne illness and zoonotic diseases. One hundred Salmonella isolates out of 241 swab specimens taken from slaughtered chicken were identified and investigated for their antimicrobial susceptibility pattern. Ampicillin (62%), tetracycline (59%), amoxicillin-clavulanic acid (46%), trimethoprim-sulfamethoxazole (35%), and ceftriaxone (24%) were the drugs with the highest prevalence of impedance. At 12%, 11%, and 8%, respectively, resistance to ciprofloxacin, chloramphenicol, and azithromycin was very negligible. In order to assess the frequency of resistance genes, six different kinds of genes were examined in this research. The findings revealed that the proportion of these genes included in the survey were tetA (10%), blaCMY-2 (32%), dfrA7 (17%), tetC (20%), sul2 (25%) , and blaTEM-1 (47%).

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Ahmed, A. M., Shimabukuro, H., & Shimamoto, T. (2009). Isolation and molecular characterization of multidrug‐resistant strains of Escherichia coli and Salmonella from retail chicken meat in Japan. Journal of food science, 74(7), M405-M410.‏

Amira OC, and Okubadejo NU. (2007). Frequency of complementary and alternative medicine utilization in hypertensive patients attending an urban tertiary care centre in Nigeria. BMC Complement Altern Med 2007; 7: 30.

Anbazhagan P. V., Thavitiki P. R., Varra M., Annamalai L., Putturu R., Lakkineni V. R., et al. (2019). Evaluation of efflux pump activity of multidrug-resistant Salmonella Typhimurium isolated from poultry wet markets in India. Infect. Drug Resist. 12 1081–1088. 10.2147/IDR.S185081

Bonilla, M., C. Olivaro, M. Corona, A. Vazquez and M. Soubes. (2005). Production and characterization of a new bioemulsifier from Pseudomonas putida ML2. Journal of Applied Microbiology. 98: 456-463.

Bush K and Bradford PA. (2006). β-Lactams and β-lactamase inhibitors: an overview. Cold Spring Harb Perspect Med. 2016;6(8):a025247.

Fonseca, E. L., Mykytczuk, O. L., Asensi, M. D., Reis, E. M. F., Ferraz, L. R., Paula, F. L., ... & Rodrigues, D. P. (2006). Clonality and antimicrobial resistance gene profiles of multidrug-resistant Salmonella enterica serovar Infantis isolates from four public hospitals in Rio de Janeiro, Brazil. Journal of clinical microbiology, 44(8), 2767-2772.‏

Frank, T., Gautier, V., Talarmin, A., Bercion, R., & Arlet, G. (2007). Characterization of sulphonamide resistance genes and class 1 integron gene cassettes in Enterobacteriaceae, Central African Republic (CAR). Journal of Antimicrobial Chemotherapy, 59(4), 742-745.‏

Frye JG and Jackson CR. (2013). Genetic mechanisms of antimicrobial resistance identified in Salmonella enterica, Escherichia coli, and Enteroccocus spp. isolated from US food animals. Front Microbiol. 2013;4:135.

Galhano, B. S., Ferrari, R. G., Panzenhagen, P., de Jesus, A. C. S., & Conte-Junior, C. A. (2021). Antimicrobial resistance gene detection methods for bacteria in animal-based foods: a brief review of highlights and advantages. Microorganisms, 9(5), 923.‏

Gargano, V., Gambino, D., Migliore, S., Vitale, M., Sciortino, S., Costa, A., & Vicari, D. (2021). Can Human Handling Increase the Presence of Multidrug Resistance (MDR) in Salmonella spp. Isolated from Food Sources?. Microorganisms, 9(10), 2018.‏

Giuriatti, J., Stefani, L. M., Brisola, M. C., Crecencio, R. B., Bitner, D. S., & Faria, G. A. (2017). Salmonella Heidelberg: Genetic profile of its antimicrobial resistance related to extended spectrum β-lactamases (ESBLs). Microbial pathogenesis, 109, 195-199.‏

Guerra, B., Soto, S. M., Argüelles, J. M., & Mendoza, M. C. (2001). Multidrug resistance is mediated by large plasmids carrying a class 1 integron in the emergent Salmonella enterica serotype [4, 5, 12: i:−]. Antimicrobial agents and chemotherapy, 45(4), 1305-1308.‏

Hall, R. M. (2012). Integrons and gene cassettes: hotspots of diversity in bacterial genomes. Annals of the New York Academy of Sciences, 1267(1), 71-78.‏

Iwu, C. J., Iweriebor, B. C., Obi, L. C., Basson, A. K., & Okoh, A. I. (2016). Multidrug-resistant Salmonella isolates from swine in the Eastern Cape province, South Africa. Journal of food protection, 79(7), 1234-1239.‏

Kiiru, J., Butaye, P., Goddeeris, B. M., & Kariuki, S. (2013). Analysis for prevalence and physical linkages amongst integrons, ISEcp1, ISCR1, Tn21 and Tn7 encountered in Escherichia coli strains from hospitalized and non-hospitalized patients in Kenya during a 19-year period (1992–2011). BMC microbiology, 13(1), 1-14.‏

Kirk, M. D., Pires, S. M., Black, R. E., Caipo, M., Crump, J. A., Devleesschauwer, B., ... & Angulo, F. J. (2015). World Health Organization estimates of the global and regional disease burden of 22 foodborne bacterial, protozoal, and viral diseases, 2010: a data synthesis. PLoS medicine, 12(12), e1001921.‏

Kuang, D., Xu, X., Meng, J., Yang, X., Jin, H., Shi, W., ... & Zhang, J. (2015). Antimicrobial susceptibility, virulence gene profiles and molecular subtypes of Salmonella Newport isolated from humans and other sources. Infection, Genetics and Evolution, 36, 294-299.‏

Kumar, A., & Kumar, A. (2021). Antibiotic resistome of Salmonella typhi: molecular determinants for the emergence of drug resistance. Frontiers of Medicine, 15(5), 693-703.‏

Lorenz, T. C. (2012). Polymerase chain reaction: basic protocol plus troubleshooting and optimization strategies. JoVE (Journal of Visualized Experiments), (63), e3998.‏

Madoroba, E., Gelaw, A. K., & Kapeta, D. (2016). Salmonella contamination, serovars and antimicrobial resistance profiles of cattle slaughtered in South Africa. Onderstepoort Journal of Veterinary Research, 83(1), 1-8.‏

Majowicz S. E., Musto J., Scallan E., Angulo F. J., Kirk M., O’Brien S. J., et al. (2010). The global burden of non-typhoidal Salmonella gastroenteritis. Clin. Infect. Dis. 50 882–889. 10.1086/650733.

McMillan EA, Jackson CR and Frye JG (2020) Transferable Plasmids of Salmonella enterica Associated With Antibiotic Resistance Genes. Front. Microbiol. 11:562181.

Møller, T. S., Overgaard, M., Nielsen, S. S., Bortolaia, V., Sommer, M. O., Guardabassi, L., & Olsen, J. E. (2016). Relation between tetR and tetA expression in tetracycline resistant Escherichia coli. BMC microbiology, 16(1), 1-8.‏

Mthembu, T. P., Zishiri, O. T., & El Zowalaty, M. E. (2019). Molecular detection of multidrug-resistant Salmonella isolated from livestock production systems in South Africa. Infection and drug resistance, 12, 3537.‏

Parry, C. M., & Threlfall, E. J. (2008). Antimicrobial resistance in typhoidal and nontyphoidal salmonellae. Current opinion in infectious diseases, 21(5), 531-538.‏

Percival, S.L. and Williams, D.W. (2014). Chapter Ten – Salmonella. In: Percival, L. et al. (Ed.) Microbiology of Waterborne Diseases (Second Edition). Academic Press. PP:209-222.

Poppe, C., Martin, L. C., Gyles, C. L., Reid-Smith, R., Boerlin, P., McEwen, S. A., ... & Forward, K. R. (2005). Acquisition of resistance to extended-spectrum cephalosporins by Salmonella enterica subsp. enterica serovar Newport and Escherichia coli in the turkey poult intestinal tract. Applied and Environmental Microbiology, 71(3), 1184-1192.‏

Poppe, C., Martin, L., Muckle, A., Archambault, M., McEwen, S., & Weir, E. (2006). Characterization of antimicrobial resistance of Salmonella Newport isolated from animals, the environment, and animal food products in Canada. Canadian Journal of Veterinary Research, 70(2), 105.‏

Tacconelli, E. (2017). Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development.‏

Ventola, C. L. (2015). The antibiotic resistance crisis: part 1: causes and threats. Pharmacy and therapeutics, 40(4), 277.‏

Wang, X., Biswas, S., Paudyal, N., Pan, H., Li, X., Fang, W., & Yue, M. (2020). Corrigendum: antibiotic resistance in Salmonella Typhimurium isolates recovered from the food chain through national antimicrobial resistance monitoring system between 1996 and 2016. Frontiers in Microbiology, 11, 1738.‏

Wayne, P. A. (2010). Clinical and Laboratory Standards Institute: Performance standards for antimicrobial susceptibility testing: 20th informational supplement. CLSI document M100-S20.‏

Downloads

Published

2023-04-29

How to Cite

Magthab, E. A., & Al-Bayati, A. M. S. (2023). Multidrug-Resistant Salmonella spp. Isolated from Local Food Markets: Molecular Factors. Journal for Research in Applied Sciences and Biotechnology, 2(2), 124–130. https://doi.org/10.55544/jrasb.2.2.18

Issue

Section

Articles