A Review on Plants and Plant/Microbial Systems in Reducing Exposure

Authors

  • Parwiz Niazi Department of Biology, Faculty of Education, Kandahar University, Kandahar, AFGHANISTAN and Department of Plant Protection, Faculty of Agriculture, Ege University, Izmir, TURKEY.
  • Abdul Wahid Monib Department of Biology, Faculty of Education, Kandahar University, Kandahar, AFGHANISTAN and School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, INDIA.
  • Azizaqa Azizi Department of Biology, Faculty of Education, Parwan University, Parwan, AFGHANISTAN.

DOI:

https://doi.org/10.55544/jrasb.2.2.1

Keywords:

Rhizosphere, microbial degradation, environmental remediation, metal

Abstract

Plants and plant-microbial compounds can be a viable means of remediating contaminated soils, in this review, two approaches to phytoremediation are discussed, the first approach how plants can promote the growth of degrading microorganisms in the soil rhizosphere, which can lead to enhanced degradation of chlorinated pesticides; the second approach focuses on the potential of plants to remove and accumulate metals from their environment, a unique test system, the Target Neighbor Method, is used to evaluate how plant density affects metal uptake, these studies could provide valuable information for optimizing plant density to improve metal removal and remediate metal-contaminated soils or to minimize toxic metal accumulation in crops and reduce human exposure.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Ali, H., Khan, E., & Sajad, M. A. (2013). Phytoremediation of heavy metals—concepts and applications. Chemosphere, 91(7), 869-881.

Aislabie, J., Deslippe, J. R., & Dymond, J. (2013). Soil microbes and their contribution to soil services. Ecosystem services in New Zealand–conditions and trends. Manaaki Whenua Press, Lincoln, New Zealand, 1(12), 143-161.

Amann, M., Kiesewetter, G., Schöpp, W., Klimont, Z., Winiwarter, W., Cofala, J., & Pavarini, C. (2020). Reducing global air pollution: the scope for further policy interventions. Philosophical Transactions of the Royal Society A, 378(2183), 20190331.

Anwar, W. A. (1997). Biomarkers of human exposure to pesticides. Environmental health perspectives, 105(suppl 4), 801-806.

Arantza, S. J., Hiram, M. R., Erika, K., Chávez-Avilés, M. N., Valiente-Banuet, J. I., & Fierros-Romero, G. (2022). Bio-and phytoremediation: Plants and microbes to the rescue of heavy metal polluted soils. SN Applied Sciences, 4(2), 59.

Bamforth, S. M., & Singleton, I. (2005). Bioremediation of polycyclic aromatic hydrocarbons: current knowledge and future directions. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 80(7), 723-736.

Banerjee, M. R., Yesmin, L., Vessey, J. K., & Rai, M. (2006). Plant-growth-promoting rhizobacteria as biofertilizers and biopesticides. Handbook of microbial biofertilizers. Food Products Press, New York, 137-181.

Beerling, D. (2017). The emerald planet: how plants changed Earth's history. Oxford University Press.

Bhatt, P., Pathak, V. M., Joshi, S., Bisht, T. S., Singh, K., & Chandra, D. (2019). Major metabolites after degradation of xenobiotics and enzymes involved in these pathways. In Smart bioremediation technologies (pp. 205-215). Academic Press.

Branca, G., Lipper, L., McCarthy, N., & Jolejole, M. C. (2013). Food security, climate change, and sustainable land management. A review. Agronomy for sustainable development, 33, 635-650.

Elnahal, A. S., El-Saadony, M. T., Saad, A. M., Desoky, E. S. M., El-Tahan, A. M., Rady, M. M., & El-Tarabily, K. A. (2022). The use of microbial inoculants for biological control, plant growth promotion, and sustainable agriculture: A review. European Journal of Plant Pathology, 162(4), 759-792.

Fan, X., & Song, F. (2014). Bioremediation of atrazine: recent advances and promises. Journal of soils and sediments, 14, 1727-1737.

G. Georgopoulos, A. Roy, MJ Yonone-Lioy, RE Opiekun, PJ Lioy, P. (2001). Environmental copper: its dynamics and human exposure issues. Journal of Toxicology and Environmental Health Part B: Critical Reviews, 4(4), 341-394.

Guo, J., Peng, Y., Wang, S., Ma, B., Ge, S., Wang, Z. & Zhang, L. (2013). Pathways and organisms involved in ammonia oxidation and nitrous oxide emission. Critical reviews in environmental science and technology, 43(21), 2213-2296.

Herrick, J. E. (2000). Soil quality: an indicator of sustainable land management? Applied soil ecology, 15(1), 75-83.

Hinsinger, P., Bengough, A. G., Vetterlein, D., & Young, I. M. (2009). Rhizosphere: biophysics, biogeochemistry and ecological relevance.

Hurni, H. (2000). Assessing sustainable land management (SLM). Agriculture, ecosystems & environment, 81(2), 83-92.

Isaifan, R. J. (2020). The dramatic impact of Coronavirus outbreak on air quality: has it saved as much as it has killed so far? Global Journal of Environmental Science and Management, 6(3), 275-288.

Jha, R. K., & Zi-Rong, X. (2004). Biomedical compounds from marine organisms. Marine drugs, 2(3), 123-146.

Kang, J. W. (2014). Removing environmental organic pollutants with bioremediation and phytoremediation. Biotechnology letters, 36, 1129-1139.

Keddy, P. (2007). Plants and vegetation: origins, processes, consequences. Cambridge University Press.

Ko, F. W., & Hui, D. S. (2012). Air pollution and chronic obstructive pulmonary disease. Respirology, 17(3), 395-401.

Kumar, V., Kaushal, A., Shah, M. P., & Singh, K. (2021). Phytoaugmentation technology for phytoremediation of environmental pollutants: current scenario and future prospects. In Bioremediation for Environmental Sustainability (pp. 329-381). Elsevier.

Lal, R. (2008). Carbon sequestration. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1492), 815-830.

Lee, J. H. (2013). An overview of phytoremediation as a potentially promising technology for environmental pollution control. Biotechnology and Bioprocess Engineering, 18, 431-439.

Magdoff, F., & Weil, R. R. (2004). Soil organic matter management strategies. Soil organic matter in sustainable agriculture, 45-65.

Makkar, H. P. S., & Becker, K. (1999). Plant toxins and detoxification methods to improve feed quality of tropical seeds-Review. Asian-Australasian Journal of Animal Sciences, 12(3), 467-480.

Martins, C., Natal-da-Luz, T., Sousa, J. P., Goncalves, M. J., Salgueiro, L., & Canhoto, C. (2013). Effects of essential oils from Eucalyptus globulus leaves on soil organisms involved in leaf degradation. PLoS One, 8(4), e61233.

Massa, D., Benvenuti, S., Cacini, S., Lazzereschi, S., & Burchi, G. (2019). Effect of hydro-compacting organic mulch on weed control and crop performance in the cultivation of three container-grown ornamental shrubs: Old solutions meet new insights. Scientia Horticulturae, 252, 260-267.

Megharaj, M., Ramakrishnan, B., Venkateswarlu, K., Sethunathan, N., & Naidu, R. (2011). Bioremediation approaches for organic pollutants: a critical perspective. Environment international, 37(8), 1362-1375.

Miransari, M. (2013). Soil microbes and the availability of soil nutrients. Acta physiologiae plantarum, 35(11), 3075-3084.

Moosavi, S. G., & Seghatoleslami, M. J. (2013). Phytoremediation: a review. Advance in Agriculture and Biology, 1(1), 5-11.

Nadeem, H., Niazi, P., Asif, M., Kaskavalci, G., & Ahmad, F. (2021). Bacterial strains integrated with surfactin molecules of Bacillus subtilis MTCC441 enrich nematocidal activity against Meloidogyne incognita. Plant Biology, 23(6), 1027-1036.

Nelson, M., & Wolverton, B. C. (2011). Plants+ soil/wetland microbes: Food crop systems that also clean air and water. Advances in Space Research, 47(4), 582-590.

Niazi, P., Monib, A. W., Ozturk, H., Mansoor, M., Azizi, A., & Hassand, M. H. (2023). Review on Surface Elements and Bacterial Biofilms in Plant-Bacterial Associations. Journal for Research in Applied Sciences and Biotechnology, 2(1), 204-214.

Omer, A. M. (2008). Energy, environment and sustainable development. Renewable and sustainable energy reviews, 12(9), 2265-2300.

Otte, M. L. (2001). What is stress to a wetland plant? Environmental and Experimental Botany, 46(3), 195-202.

Patil, P., & Kumar, A. K. (2017). Biological carbon sequestration through fruit crops (perennial crops-natural “sponges” for absorbing carbon dioxide from atmosphere). Plant Archives, 17(2), 1041-1046.

Prasad, S., Malav, L. C., Choudhary, J., Kannojiya, S., Kundu, M., Kumar, S., & Yadav, A. N. (2021). Soil microbiomes for healthy nutrient recycling. Current trends in microbial biotechnology for sustainable agriculture, 1-21.

Rea, J. (2006). Wetlands and Water Quality Improvement. University of Manchester.

Rieger, P. G., Meier, H. M., Gerle, M., Vogt, U., Groth, T., & Knackmuss, H. J. (2002). Xenobiotics in the environment: present and future strategies to obviate the problem of biological persistence. Journal of Biotechnology, 94(1), 101-123.

SHANNIGRAHI*, A. S., Fukushima, T., & Sharma, R. C. (2004). Anticipated air pollution tolerance of some plant species considered for green belt development in and around an industrial/urban area in India: an overview. International Journal of Environmental Studies, 61(2), 125-137.

Singleton, I. (1994). Microbial metabolism of xenobiotics: fundamental and applied research. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental AND Clean Technology, 59(1), 9-23.

Thornton, P. K. (2010). Livestock production: recent trends, future prospects. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1554), 2853-2867.

Uren, N. C. (2000). Types, amounts, and possible functions of compounds released into the rhizosphere by soil-grown plants. In The rhizosphere (pp. 35-56). CRC press.

Varsha, Y. M., Naga Deepthi, C. H., & Chenna, S. (2011). An emphasis on xenobiotic degradation in environmental cleanup. J Bioremed Biodegrad S, 11(001).

Vilela, C. L. S., Bassin, J. P., & Peixoto, R. S. (2018). Water contamination by endocrine disruptors: Impacts, microbiological aspects and trends for environmental protection. Environmental pollution, 235, 546-559.

Vohra, K., Vodonos, A., Schwartz, J., Marais, E. A., Sulprizio, M. P., & Mickley, L. J. (2021). Global mortality from outdoor fine particle pollution generated by fossil fuel combustion: Results from GEOS-Chem. Environmental research, 195, 110754.

Vymazal, J. (2018). Does clogging affect long-term removal of organics and suspended solids in gravel-based horizontal subsurface flow constructed wetlands? Chemical Engineering Journal, 331, 663-674.

Wang, X., Sial, M. U., Bashir, M. A., Bilal, M., Raza, Q. U. A., Ali Raza, H. M., & Geng, Y. (2022). Pesticides Xenobiotics in Soil Ecosystem and Their Remediation Approaches. Sustainability, 14(6), 3353.

Wang, Z., Duan, X., Liu, P., Nie, J., Huang, N., & Zhang, J. (2009). Human exposure factors of Chinese people in environmental health risk assessment. Research of Environmental Sciences, 22(10), 1164-1175.

Wenzel, W. W., Adriano, D. C., Salt, D., & Smith, R. (1999). Phytoremediation: a plant—microbe‐based remediation system. Bioremediation of contaminated soils, 37, 457-508.

Weyens, N., Thijs, S., Popek, R., Witters, N., Przybysz, A., Espenshade, J. & Gawronski, S. W. (2015). The role of plant–microbe interactions and their exploitation for phytoremediation of air pollutants. International journal of molecular sciences, 16(10), 25576-25604.

Yaashikaa, P. R., Kumar, P. S., Jeevanantham, S., & Saravanan, R. (2022). A review on bioremediation approach for heavy metal detoxification and accumulation in plants. Environmental Pollution, 119035.

Downloads

Published

2023-04-04

How to Cite

Niazi, P., Monib, A. W., & Azizi, A. (2023). A Review on Plants and Plant/Microbial Systems in Reducing Exposure. Journal for Research in Applied Sciences and Biotechnology, 2(2), 1–7. https://doi.org/10.55544/jrasb.2.2.1

Issue

Section

Articles

Most read articles by the same author(s)