Effect of Antibiotics on the Pathogenic Bacteria (K. pneumonia and P. aeruginosa) Isolated Around the Dental Implant Area
DOI:
https://doi.org/10.55544/jrasb.2.1.22Keywords:
Antibiotics, Klebsiella pneumonia, Pseudomonas aeruginosa, dental implantAbstract
In this study, the bacterial isolates (36) were obtained from total 52 samples were taken Twenty K. pneumonia and sixteen P. aeruginosa isolates were found in the dental implant region of individuals of varying ages and sexes who visited a single dental clinic. It was determined what kind of bacteria had been identified by culture, microscopic characteristics and biochemical tests. The resistance and sensitivity of isolates to eight antibiotics (Ceftazidime CAZ, Amikacin Ak, Ciprofloxacin CIP, Chloramphenicol C, Meropenem MEM, Gentamycin GN, Imipenem IMI, Amoxicillin Clavulanate AMC) were studied, with depending on the diameter of the inhibition on Muller-Hinton Agar medium and its comparison with the standard ratios in the Clinical and Laboratory Standards Institute (CLSI, 2018). The results showed that the highest percentage of resistance K. pneumonia bacteria was to Ceftazidime and Amoxicillin Clavulanate, which reached (100% ,90%), respectively. It was followed by Gentamycin (77%), Ciprofloxacin (67%) and Amikacin was (40%). While the lowest percentage of resistance to the antibiotics (Imipenem, and Meropenem) were (25%) and Chloramphenicol was (20%). As for bacteria. aeruginosa the highest percentage of resistance was to the antibiotic Ceftazidime (93%), followed by the antibiotic Amikacin by (71%), Chloramphenicol (58%), Gentamycin (47%), Meropenem (42%), then the antibiotic Imipenem (40%) While the lower percentage of resistance to the antibiotic Amoxicillin Clavulanic (39%) and Ciprofloxacin (20%). This review provides a complex effect of antibiotics to understand of mechanism and effects of the antibiotic is the base for the new approaches in clinical treatments by which can effectively fight the groups of the resistant pathogens, in patients who are at high risk specially when undergo dental procedures.
Downloads
Metrics
References
Al-Jader, Z. W.; Ibraheem, S. N. (2022). Molecular detection of some pathogenic bacteria (Klebsiella pneumoniae, Pseudomonas aeruginosa and Escherichia coli) from human saliva, Journal of Microbial Biosystems, Vol. 7, N. (1), pp. (32-38).
Al-Jubouri, Muhaimid Mad Allah (1990). Pathological Bacteriology, Dar Al-Kutub for Printing and Publishing, University of Mosul, Iraq.
Al-mamari, N., M. (2018). Study of the Inhibitory Activity of Pyocyanin pigment Extracted from Pseudomonas aeruginosa on some Gram positive and negative bacteria. M.Sc. Thesis, University of Mosul, Colleg of education for pure science.
Al-Tikriti, S. M., (2021). Molecular detection of some virulence factors in bacterial species isolated from the respiratory tract infection in children in Mosul province. M. Sc. Thesis, university of Mosul, College of education for pure science.
Baron, E.J.; Finegold, S. M. and Peterson, I. L. R. (2007). Bailey and Scotts Diagnosis Microbiology. (9thed.) Mosby Company. Missouri.
Block, M., and Blanchard, D. L. (2022). Aminoglycosides. In Stat Pearls [Internet]. Stat Pearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK541105/
Castañeda-Garc´ıa, A.; Blazquez, J. and Rodrıguez-Rojas, A. (2013). “Molecular mechanisms and clinical impact of acquired and intrinsic fosfomycin resistance,” Antibiotics, vol. 2, no. 2, pp. 217–236.
De Nies, L., Lopes, S., Busi, S. B., Galata, V., Heintz-Buschart, A., Laczny, C.C., and Wilmes, P. (2021). Patho Fact: apipeline for the prediction of virulence factors and antimicrobial resistance genes in metagenomic data. Microbiome, 9(1), 1-1
Forbes, B. A.; Saham, D. F. and Weissfeld, A. S. (2007). Baily and Scotts Diagnostic Microbiology 12th ed. Mosby, Inc., an anffilliate of Elsevier, Inc. 103pp.
Geddes, A. M., Klugman, K. P., and Rolinson, G. N. (2007). Introduction: historical perspective and development of amoxicillin/clavulanate. International journal of antimicrobial agents, 30, 109-112.
Goldman, E. and Green, L. (2009). Practical Handbook of Microbiology. (2nd ed.), Taylar and Francis group, LIC.
Hidalgo, A. A., Arias, A. J., Fuentes, J. A., Garcia, P., Mora, G. C., and Villagra, N. A., (2018). Xylose Improve Antibiotic Activity of Chloramphenecol and Tetracycline against K. pneumoniae and A. baumannii in a Murine Model of Skin Infection. Canadian Journal of Infectious Diseases and Medical Microbiology, (2018).
Hoen, B., and Duval, X. (2013). The clinical problem. N Engl. J Med, 368, 1425-33.
Hurst, M., and Lamb, H. M. (2000). Meropenem. Drugs, 59(3), 653-680.
Jawetz, E. Melnik, J. L., Adelberg, E. A., Brook, G. F., Butel, J. S. and Morse, S. A. (2019). Medical Microbiology (16th ed.) Appleton and Iang New York. Connecticut. Pp. 254-260.
Limeres Posse, J., Álvarez Fernández, M., Fernández Feijoo, J., Medina Henríquez, J., Lockhart, P. B., Chu, V. H., and Diz Dios, P. (2016). Intravenous amoxicillin/clavulanate for the prevention of bacteraemia following dental procedures: a randomized clinical trial. Journal of Antimicrobial Chemotherapy, 71(7), 2022-2030.
Mofolorunsho, K. C., Ocheni, H. O., Aminu, R. F., Omatola, C. A., and Olowonibi, O. O. (2021). Prevalence and antimicrobial susceptibility of extended- spectrum beta lactamases producing Escherichia coli and K. pneumoniae isolated in selected hospitals of Anyigba, Nigeria, African Health Sciences, 21(2), 505-512.
Procop, G. W.; Church, D. L.; Hall, G. S.; Janda, W. M.; Koneman, Schreckenberger, P. C., and Woods, G. L. (2017). Koneman 's Color Atlas and Tetbook of Diagnostic Microbiology. 7th ed. Wolters Kluwer Health, Philadelphia.
Qin, X.; Emerson, J.; Stapp, J.; Stapp, L.; Abe, P. and Burns, J. L. (2003). Use of real-time PCR with multiple targets to identify Pseudomonas aeruginosa and other non-fermentation gram- negative bacilli from patients with cystic fibrosis. Journal of Clinical Microbiology, 41(9): 4312-4317.
Ready, D., Lancaster, H., Qureshi, F., Bedi, R., Mullany, P., and Wilson, M. (2004). Effect of amoxicillin use on oral microbiota in young children. Antimicrobial agents and chemotherapy, 48(8), 2883-2887.
Rida, R. H., Al Laham, N. A., and Elmanama, A. A. (2018). Carbapenem Resistance among clinical and environmental Gram – negative isolates recovered from hospitals in Gasa strip, Palestine. Germs, 8(3), 147.
Rocha, A. J., Barsottini, M. R. D. O., Rocha, R. R., Laurindo, M. V., Moraes, F. L. L., and Rocha, S. L. D. (2019). Pseudomonas aerogenosa virulence factors and antibiotic resistance genes. Brazillian Archives of biology and technology, 62.
Shaaban, M. I., Shaker, M. A., and Mady, F. M. (2017). Imipenem/cilastatin encapsulated polymeric nanoparticles for destroying carbapenem-resistant bacterial isolates. Journal of Nanobiotechnology, 15(1), 1-12.
Silva, S. S., Ribeiro, M. D. O., Gomes, F. I. F., Chaves, H. V., Zanin, I. C. J., and Barbosa, F. C. B. (2016). Occurrence and antimicrobial susceptibility of enteric rods and pseudomonads isolated from the dental prostheses biofilm. Journal of Applied Oral Science, 24, 462-471.
Sizar, O., Rahman, S., and Sundareshan, V. (2021). Amikacin. In StatPearls [Internet]. StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK430908
Soares, G. M. S., Figueiredo, L. C., Faveri, M., Cortelli, S. C., Duarte, P. M., and Feres, M. (2012). Mechanisms of action of systemic antibiotics used in periodontal treatment and mechanisms of bacterial resistance to these drugs. Journal of applied oral science, 20, 295-309.
Vandepitte, J., Verhaegen, J., Engbaek., Rohner, P., Piot., P., Heuck, C. C., and Heuck, C. C. (2003). Basic Laboratory procedure in Clinical bacteriology. Brazillian Journal of Microbiology, 40(1), 1-11.
Vessillier, S.; Delolne, F.; Bernillon, J.; Saulueir, J.and Wallach, J. (2001). Hydrolysis of glycin-containing elastin pentapeptides by las A,metallo-Beta-lactams from Pseudomonas aerogenosa. European Journal of Biochemistry, 268(4): 1049-1057.
Walsh, C. (2003). Antibiotics: actions, origins, resistance. American Society for Microbiology (ASM).
Wang, Y., Wang, J., Wang, R., and Cai, Y. (2020). Resistance to ceftazidime–avibactam and underlying mechanisms. Journal of global antimicrobial resistance, 22, 18-27.
Wei, Z., Shi, X., Lian, R., Wang, W., Hong, W., and Guo, S. (2019). Exclusive production of gentamicin C1a from Micromonospora purpurea by metabolic engineering. Antibiotics, 8(4), 267. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6963548
White AR, Kaye C, Poupard J, Pypstra R, Woodnutt G, Wynne B. Augmentin (2004). (amoxicillin/clavulanate) in the treatment of community acquired respiratory tract infection: a review of the continuing development of an innovative antimicrobial agent. Journal Antimicrob Chemother, 53(Suppl S1): 3–20.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Sabrya N. Ibraheem , Mohammed A. Al-Shakarchi
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.