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ABSTRACT 

 
Mathematics is a vast science that has developed in different parts according to human needs and at different times to 

solve human problems since its inception. The branches of mathematics can be considered as an independent field due to their 

complexity. Numerical calculations or numerical analysis, in turn, can be found in different parts due to the calculations of 

equations that do not have real solutions. It can find their numerical solutions. 

Numerical analysis can be used in various areas such as power calculations, logarithms, limit calculations, numerical 

derivatives of functions, numerical integrals, etc. mathematical calculations. In this regard, mathematicians have conducted 

research in various areas and after a period of time have reached a solution to the problem at hand and have left a mark in the 

form of various relations, formulas, and theorems, each of which has created convenience for the reader. One of these methods 

that can easily solve equations is solving a system of linear equations using the Monte Carlo method. Basically, this method, with 

its complexity, considering probabilistic calculations and obtaining the prices of a system and using mathematical hope, can 

easily solve a system of linear algebraic equations. 

 

Keywords- Linear Algebraic Equations, Mathematical Hope, Linear equation system, Random variable, Eigenvalues and 

eigenvectors of each matrix. 

 

 

 

I. INTRODUCTION 
 

Mathematical Hope: 

Definition 1: If a random variable x has a probability 

function f(x), then the mathematical expectation of x 

is 

If X is discrete                ( ) ( )X

x

E X xf x=  

If X is continuous.                    ( )Xxf x dx


−
=   

Definition: If a random variable X has a probability 

distribution f(x) (probability density function f(x)), 

then the mathematical expectation of any function of 

X such as h(x) is 

If X is discrete                ( ) ( )( ) ( )
x

E h x h x f x=  

If X is continuous.        ( )( )h x f x dx


−
=   

Example: A fair die is thrown once. If the random 

variable X represents the number that appears, determine 

the mathematical expectation of the random variable 

〖𝑌 = 2𝑋〗^2 − 5. 

Solution: The probability distribution f(x) is: 

1 2 3 4 5 6

1 1 1 1 1 1
( )

6 6 6 6 6 6

x

f x

 

And according to the above definition 

( ) ( ) ( )
6

2

1

1 76
2 5 ( ) 3 3 13 27 45 67

6 3x

E X x f x
=

= − = − + + + + + =
 

Definition: If X  and Y  are two random variables with 

joint probability distribution ( ), ,X Yf x y  (joint 
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probability density function ( ), ,X Yf x y ). The 

mathematical expectation of any function of X  and Y , 

such as ( ),h X Y , is: 

If X  and Y  are both discrete     

( )( ) ( ) ( ),, , ,X Y

x y

E h X Y h x y f x y=  

If X  and Y  are both continuous                        

( ) ( ),, ,X Yh x y f x y dxdy
 

− −
=    

Investigating and finding answers to any 

scientific phenomenon requires an appropriate algorithm 

for that phenomenon. For example, when we want to 

find the unknown function f given a number of points on 

the graph of that function, we search for a sequence of 

functions whose limit tends towards f. 

lim (1)n
n

f f
→

=  

When the number of nf  is finite, this task is 

completed in a few steps; however, there are many 

phenomena and problems for which it is impossible to 

construct an algorithm to solve them. One way to escape 

this impasse is to use probability methods. Which is 

useful for investigating some mathematical and physical 

phenomena. In investigating these phenomena, the 

values of 2 1, , ,nf f f  obtained through a series of 

random experiments tend towards f . So, when 

n→  the random variable nf  which depends on the 

phenomenon converges to f ; then for every 0   

( )lim 1 (2)n
x

P f f 
→

−  =  

The value f  is the probability of a random 

event, or the mathematical expectation that it will occur. 

f  is called the random variable. nf  is found by n  

random experiments, which may involve assumptions. 

As is evident, in this approach, there is not much 

calculation involved and the requirements are achieved 

with the help of experimentation. 

Methods that use random values are grouped 

under the general name of Monte Carlo method. In other 

words, Monte Carlo method refers to a set of methods 

with the help of which we can obtain some physical or 

mathematical phenomena by random experiments. The 

effectiveness of Monte Carlo method has become more 

widespread with the advent of computers. 

Obtaining a proper and accurate estimate 

requires repeated and frequent calculations, but by using 

the Monte Carlo method, there is no longer any need to 

know how the desired and the found, or the given value 

and the searched value, are related. 

Some of the mathematical phenomena that 

Monte Carlo simulation is used to solve are as follows. 

Solving systems of linear equations, finding the 

inverse of a matrix, finding the eigenvalue and 

eigenvectors of each matrix, calculating multiple 

integrals, solving Dirichlet problems, etc. This method is 

also used to investigate many physical phenomena. 

In this course, we will discuss calculating 

multiple integrals and finding the solution of linear 

equations using the Monte Carlo method. Consider the 

following linear system. 

1

( 1,2,3, , ) (1)
n

ij j

j

a x i n
=

=  

In some methods, we write the device (1) in the 

following special form: 

1

(2)
n

i ij j i

j

X a x 
=

= +  

By placing: 

1 1

2 2
(3)ij

n n

x

x
x

x




  



   
   
     = = =     
   
   

 

We write the device (2) as follows: 

(4)X X = +  

And we assume that all eigenvalues of matrix 

a  are smaller than unity. In the special case, for 

canonical norms of matrix a , it is sufficient that the 

following condition . 

1 (5)   

is valid. So, the system (4) has a single solution. Which 

is obtained by the iteration method. Now a set of 

coefficients ijV  and also numbers ijP  is defined by the 

following equations 

( 1,2,3, , ) (6)ij ij ijPV ij n = =  

We choose which has the following condition. 

0 0 ( 0) (7)ij ij ijP P     

1

1 ( 1,2,3, , ) (8)
n

ij

j

P i n
=

 =  

Suppose 

, 1

1

1 ( 1,2,3, , ) (9)
n

i n

j

P Pij i n+

=

= − =  

We add: 

Consider a particle with random behavior and states 

1 2 1, , , ,n nS S S S + . (The probability of going from 

stage iS  to stage ij jP S= ) In special states 1nS T+ =  

corresponds to the particle completely stopping. We also 

have: 

1,n j jP S+ =  In the state 1nS +  Probability of transition 

from state 0( 1,2,3, , )j n= =  
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1,n j jP S+ =  In the state 1nS +  Probability of transition 

from state 1( 1)j n= = +  

Thus, this process of random behavior ends as 

soon as the particle reaches a finite state of T . This 

variation is commonly called a Markov chain with a 

finite number of states. 

ijP  is called the transition probability? And matrix P  is 

the matrix of steps  iS . 

𝜋
= [■(𝑝_11&𝑝_12& ⋯ &𝑝_1𝑛&𝑝_1(𝑛
+ 1) @𝑝_21&𝑝_22& ⋯ &𝑝_2𝑛&𝑝_2(𝑛 + 1) @ ⋮ &
⋮ & ⋯ & ⋮ &
⋮ @𝑝_𝑛1&𝑝_22& ⋯ &𝑝_𝑛𝑛&𝑝_𝑛(𝑛
+ 1) @0&0& ⋯ &0&1)]"                                " (10) 

 

Let ( )1iS i n +  be a fixed state different 

from the limit state. The random behavior of a particle 

that starts its motion at 
0i iS S= , then moves to 

intermediate states 
1 2 3 1
, , , , ,

n ni i i i iS S S S S
−

 and ends 

its motion at limit 
1ni

S T
+
= . We consider. The sum of 

states: 

𝑇_𝑖 = {𝑆_(𝑖_0 ), 𝑆_(𝑖_1 ), 𝑆_(𝑖_2 ), ⋯ 𝑆_(𝑖_𝑛 ), 𝑆_(𝑖_(𝑛
+ 1) ) }"                           " (11) 

 

 For brevity it will be called a path. Let iX be a random 

value that depends on the random paths iT  starting from 

state iS . And let 2 be the value that takes. 

𝜉(𝑇_𝑖 )
= 𝛽_(𝑖_0 ) + 𝑉_(𝑖_0 𝑖_1 ) 𝛽_(𝑖_1 )
+ 𝑉_(𝑖_1 𝑖_2 ) 𝛽_(𝑖_2 ) + ⋯ + 𝑏_(𝑖_𝑜 𝑖_1 ) + 𝑉_(𝑖_(𝑚
− 1) 𝑖_𝑚 ) 𝛽_(𝑖_𝑚 ) "             " (12)"         "  

 

where ( )0 1 2, , , ,i mi i i i i = =  are the corresponding 

constant terms of system (2)? 

In the special case if is 1ijV = . We simply have that: 

𝜉(𝑇_𝑖 ) = 𝛽_(𝑖_0 ) + 𝛽_(𝑖_1 ) + 𝛽_(𝑖_2 ) + ⋯
+ 𝛽_(𝑖_𝑚 ) "                      " (13) 

By the law of product of direct probabilities, the 

probability of random path iT  occurring and thus 

producing value ( )ix T  is: 

𝑃(𝑇_𝑖 ) = 𝑃_(𝑖_0 𝑖_1 ) + 𝑃_(𝑖_1 𝑖_2 ) + 𝑃_(𝑖_2 𝑖_3 )
+ ⋯ + 𝑃_(𝑖_𝑚 𝑖_(𝑚
+ 1) ) "           " 𝑖_(𝑚 + 1)
= 𝑛 + 1, " " 𝑖_0 = 𝑖"                       " (14) 

 

Theorem: The mathematical expectations of 

( )1,2, ,i iMx x I n= =  are the roots of system (2).  

Proof: Paths iT  starting from state iS  may be divided 

into 1n +  categories that depend on the first stage. 

■(𝑇_(𝑖_1 ) = {𝑆_𝑖, 𝑆_1, 𝑆_(𝑖_1 ) ⋯ }@𝑇_(𝑖_1 )
= {𝑆_𝑖, 𝑆_2, 𝑆_(𝑖_1 ) ⋯ }@     ⋯ "       " ⋯ "    " ⋯ "     " ⋯ "  

" (15)@𝑇_(𝑖_𝑛 ) = {𝑆_𝑖, 𝑆_𝑛, 𝑆_(𝑖_1 ) ⋯ }@𝑇_(𝑖_(𝑛
+ 1) ) = {𝑆_𝑖, 𝑆_(𝑛 + 1) } ) 

A particle that starts a random behavior at stage iS  can 

go to stage 2S , etc., and once a certain number of stages 

have been completed, its random behavior ends at the 

boundary.   

If a particle has path 1 and 2, then 

■(𝜉(𝑇_(𝑖_𝑗 ) )
= 𝛽_𝑖 + 𝑉_𝑖𝑗 𝛽_𝑗 + 𝑉_𝑖𝑗 𝑉_𝑖𝑗 𝛽_(𝑖_2 ) + ⋯
+ 𝑉_𝑖𝑗 𝑉_(𝑗𝑖_2 ) ⋯ 𝑉_(𝑖_(𝑚 − 1)
− 𝑖_𝑚 ) 𝛽_(𝑖_𝑚 )@"                                             " 
= 𝛽_𝑖 + 𝑉_𝑖𝑗 (𝛽_𝑗 + 𝑉_(𝑗𝑖_2 ) 𝛽_(𝑖_2 ) + ⋯
+ 𝑉_(𝑗𝑖_2 ) ) + 𝑉_(𝑖_(𝑚 − 1) − 𝑖_𝑚 ) 𝛽_(𝑖_𝑚 )
= 𝛽_𝑖 𝜉(𝑇_𝑖 )"                  " (16) ) 

Where it  is a path starting from stage 
jS . 

When a particle reaches region T  and its path is in 

arrangement  , 1 , 1i n i nS T+ += , then the probability that 

path iT  is a path of type ijT  is clearly equal to ijP . By 

the definition of mathematical expectation, we have: 

𝑀𝑋_𝑖 = ∑_(𝑇_𝑖)▒𝜉(𝑇_𝑖 )𝑃(𝑇_𝑖 )  
= ∑_𝑗 "  " ∑_(𝑇_𝑖𝑗)▒𝜉(𝑇_𝑖𝑗 )𝑃(𝑇_𝑖𝑗 )  "                            " (17) 

If 1j n +  is not, then ijT  includes interval ( ),i iS S  

and path iT , therefore; 

𝑃(𝑇_𝑖𝑗 ) = 𝑃_𝑖𝑗 𝑝(𝑇_𝑗 )"                               " (19) 

So, according to equation (16), it is obtained as follows. 

( ) ( ) , 1

1

(20)
n

i i ij i ij i i i n

j

MX V T P P T P


   +

=

 = +  + 

 

Or will we have 

( ) ( ) ( ) , 1

1 1

(21)
j j

n n

i ij ij i j i ij j i n

i T i T

MX PV T P T P T P  +

= =

 
= + + 

  
   

 

In addition, we have 

( ) 1 (22)
j

j

T

P T =  

( )
1

, 1

1 1

(23)
j

n n

ij j i n ij

j T j

P P T P P
+

+

= =

+ =    

Therefore 

1

( 1,2,3, , ) (24)
n

i ij i i

j

MX MX i n 
=

= + =

 

That 

(25)ij ij ijPV =  

And thus, the proof of the theorem is complete. 
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In proving this theorem, we assumed that the 

mathematical expectation is i ix MX= . Because when 

condition (5) holds, the random values have a finite 

mathematical expectation of ix . And this can be proved. 

To experimentally determine the value of 

, i iN x MX= , consider the random behavior 
( )k

iT  with 

random paths where ( )1,2,3, ,k N=  and the initial 

state ( )iS  are considered, and record the values 

( )( )k

iT  of the random value ix  each time. 

Suppose that the trials are independent, that the 

value of , i iN x MX=  has a finite variance. By Sheff's 

left theorem, and for N  sufficiently large, the following 

inequality will be true with arbitrary probability close to 

I . 

( )( )
1

1
(26)

N
k

i i

k

x T
N

 
=

−   

(Which is a limiting error.) 

Therefore, the roots of system (2) can be approximately 

determined by the following formula. 

( )( )
1

1
(27)

n
k

i i

k

x T
N


=

=   

In a special case, this method can be used to find a 

matrix like the one below. 

(28)A E a= −  

where 1   and 
ijE d =    are a unit matrix. 

Note that the elements of the matrix 
1

ijA x−  =    are 

the roots of the system 

( )
1

( , 1,2,3, ) (28)
n

ik ik kj ij

k

x i j n  
=

− = =

 

where the elements of each column 

1 2, , 1,2,3, ,j j njx x x j n=  of matrix 
1A−

 

are represented by the linear system: 

1

( 1,2,3, , ) (29)
n

ij ik kj ij

k

x x i n 
=

= + =

 

They have been determined. 

Based on what was said, we start from state 

0i iS S=  and obtain the random value j  with the 

following values for fixed iX . 

( )
0 1 0 1 1, (30)

o n n nj i i j i j i i i i i i i iT V V V V   
−

= + + +

 

where  
0 1 2 1
, , , , ,

m mi i i i i iT S S S S S T
+

= =  and the 

number 
ijV  are like 

ijP . and are obtained from 

equations 
ij ij ijPV = ., are such that 

ijP  shows the 

probability of transition from state iS  to jS . The 

mathematical expectations iMX  give us the elements of 

matrix 
1A−

. 

Now we will practically show how to organize 

a random behavior. For this purpose, we consider the 

random behavior of a particle with transition 

probabilities 
ijP . For simplicity, we assume that they 

ijP  are decimal functions with common denominator 

10s
 ( s  natural numbers). 

1 2

, 11 2
, 1, , , (31)

10 10 10

i ni i
i i i ns s s

tt t
P P P

+

+= = =  

where 1 are non-negative integers 

1 2 2 1
10 ( 1,2,3, , ) (32)

n n

s

i i i i it t t t t i n
+

+ + + + + = =

 

Consider a particle that starts moving from initial state 

iS , let  x  be a set of s -digit numbers less than unity 

with a uniform distribution over the interval  0,1 . For 

example, consider the black elements of random 

numbers.   Suppose we generate a random number x . If 

the inequality 10
10

i

s

t
x   holds, then we obtain that 

the particle goes from iS  to iS . Other transitions are 

also obtained in a similar way. In special cases, if the 

random number x  is such that 

1 2 1 2 1 (32)
10 10

n n ni i i i i i i

s s

t t t t t t t
x +

+ + + + +
 

The particle hits area 1nS T+ = . 

Based on the obtained agreement, it is clear that 

the number of sentences of the desired states for 

transition i jS S→  is proportional to 

( )1,2, , 1i n= + . With the corresponding numbers 

1 2 1n ni i i it t t t
+

+ + + , these states have equal 

probabilities. Therefore, the transition probability is as 

follows: 

( ) 1 ( 1,2,3, , , 1,2,3, , 1) (33)
10

i

i j ijs

t
P S S P i n j n→ = = = +

 

By extracting a sequence of random numbers 

and obtaining the above rule, we obtain the random 

behavior of a particle with a fixed initial state and find 

the transition matrices. To obtain the correctness of the 

roots, we must consider a sufficiently large number k for 

independent random behaviors. 
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Example: Solve the following system of equations using 

the Monte Carlo method. 

1 1 2

2 1 2

0.1 0.2 0.7

0.2 0.3 1.1

x x x

x x x

= + +


= + +
 

We assume that 

21 22 11 121 1 1 1V V V V= = − = =  

Therefore, the transition probability matrix is as follows. 

0.1 0.2 0.7

0.1 0.3 0.5

0 0 1



 
 

=
 
  

 

The elements of the first row are the transition 

probabilities from state iS  to 2 1,S S  and 3S T= , 

respectively, and the elements of the second row are the 

transition probabilities from state 2S  to 3 2 1, ,S S S , and 

the margin corresponds to the range T . Because the 

elements of the matrix P  are multiples of 0.1 . And one 

of the cases that can be considered are single-digit 

random numbers whose digits are obtained from some 

random sequences and are given in 1  . 

The results collected in the relation are for 20 

random behaviors with initial state 1S . Random number 

x  satisfies the transitions of the steps using the 

following guidelines. 

For the initial stages of 1S : 

1. If 0 0.1x   Then 1 1S S→  

2. if 0.1 0.3 then 1 2S S→  

3. if 0.3 1x  then 1S T→  

For the initial stages of 2S : 

1. if 0 0.2x  then 2 1S S→   

2. if 0.2 0.5X→ → then 2 2S S→  

3. if 0.5 1X→ → then 2S T→   

The values of 1X  calculated by the command (10) are 

updated in the last column of equation 1  . As a 

result, we have: 

( )1 1

1
21 0.7 4 (1,1) 0.96

20
x MX=   +  =  

The unknown 2x  is also obtained in a similar way. Note 

that the roots of the system 

1 1 2

2 1 2

0.1 0.2 0.7

0.2 0.3 1.1

x x x

x x x

= + +


= + +
 

is equal to 2 11, 1x x= = . 

Other methods can also be used to solve linear 

algebraic equations using the Monte Carlo method. As 

we mentioned earlier, the fourth column of the 

determinant, i.e. the values of ix , is calculated using the 

formula (34). For example, we have calculated an 

example of it below, and the remaining values can be 

easily investigated in a similar way. 

( )
0 0 1 1 1 2 2 0 2 1

(34)
m m mi i i j i i j i i j i j iT V V V V    
−

= + + + +

 

Now consider list number 12, in which we have: 

1 1 2 2 1 1S S S S S S T→ → → → → →  

Which we will have: 

0 1 2 3 4 51, 1, 2, 2, 1, 2, 5i i i i i i m= = = = = = =  

So: 
( ) 1 11 1 11 12 2 11 12 22 2 11 12 22 21 1 11 12 22 21 12 2 (35)x T V V V V V V V V V V V V V V V     = + + + + +

 

That by placing 
( ) ( )( ) ( )( )( ) ( )( )( )( ) ( )( )( )( )( ) ( )( )( )( )( )( )0.7 1 0.7 1 1 1.1 1 1 1 1.1 1 1 1 1 0.7 1 1 1 1 1 1.1

0.7 0.7 1.1 0.7 1.1

T = + + + − + − + −

= + + − −

 

You should note that the transitions of iS T→  easily 

correspond to the value of ( )i iT = , and we saw this 

in the proof of the theorem. 

In Table 1-4, we have extracted the random 

values from Table 1-1 for the random numbers. Recall 

again that the values of random variable 1 are the same 

as 2 and are listed in the fourth column. 

 

iX  Random 

value 
Random behavior path 

x
random 

number 

Number 

0.7 1S T→ 0.5 1 

0.7 1S T→ 0.7 2 

0.7 1S T→ 0.7 3 

0.7+0,7 1 1S S T→ → 0.0 4 

  0.5  

0.7 1S T→ 0.7 6 

0.7+1.1 1 1S S T→ → 0.1 7 

  0.8  

0.7 1S T→ 0.7 8 

0.7 1S T→ 0.3 9 

0.7 1S T→ 0.7 10 

  0.1 11 

 1 2 1S S S T→ → → 0.0  

  0.0 12 

0.7+0.7+1.1 1 1 1 2S S S S→ → → 0.3  

-1.1-1.7-1.1 1 2S S T→ → 0.1  

  0.6  

0.7 1S T 0.9 13 
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0.7 1S T 0.6 14 

0.7+1.1 1 1S S T→ → 0.1 15 

  0.5  

0.7 1S T→ 0.3 16 

0.7 1S T→ 0.3 17 

0.7 1S T→ 0.2 18 

  0.4  

0.7+1,1-1.1 1 2 2 2S S S S→ → → 0.4  

+1.1-1.1-0.7  0.1  

  0.6  

0.7 1S T→ 0.6 19 

0.7+1.1 1 2S S T→ → 0.2 20 

21 0.7 4 1.1 +     
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