Investigation of Adjoint of Linear Transformation and Some Its Important Properties

Najibullah Yousefi ${ }^{1}$, Laila Popalzai ${ }^{2}$ and Hadia Jalal ${ }^{3}$
${ }^{1}$ Teaching Assistant, Department of Higher Mathematics, Electromechanics Faculty, Kabul Polytechnic University, BaghBala, Kabul, AFGHANISTAN.
${ }^{2}$ Sinior Teaching Assistant, Department of Higher Mathematics, Electromechanics Faculty, Kabul Polytechnic University, BaghBala, Kabul, AFGHANISTAN.
${ }^{3}$ Sinior Teaching Assistant, Department of Higher Mathematics, Electromechanics Faculty, Kabul Polytechnic University, BaghBala, Kabul, AFGHANISTAN.

${ }^{1}$ Corresponding Author: n.yousefi@kpu.edu.af

www.jrasb.com || Vol. 1 No. 4 (2022): October Issue

Received: 20-09-2022
Revised: 11-10-2022
Accepted: 21-10-2022

Abstract

Linear operator on inner product space is including adjoint operator, self adjoint operator, unitary operator, normal operator, ... (self adjoint operator and unitary operator is normal operator but convers is not true at all) in this paper I discussed about adjoint operator and self adjoint operator of linear transformation and some important properties.

In this paper first I defined the linear transformation, inner product space, adjoint linear transformation, self adjoint operator and very important relevant properties and theorem.

Keywords- vector space, linear map, dimension, field, inner product space, operator, orthonormal basis, orthogonal, diagonal, positive definite.

I. INTRODUCTION

Definition 1: let V and W be vector spaces over field K, A mapping from V to W denoted by $T: V \rightarrow W$ (1) is called linear transformation if T hold the following properties
1: $\quad T(u+v)=T(u)+T(v) \quad$ for \quad all $\quad u, v \in V$ 2: $T(\alpha u)=\alpha T(u)$ for $\alpha \in K$
Definition 2: Let V be vector space over field K, an inner product over vector space V denoted by \langle,$\rangle is a map from$ $V \times V \rightarrow F$ satisfy the given properties
$1:\langle u, v\rangle=\overline{\langle u, v\rangle}$, the complex conjugate of $\langle u, v\rangle$ $\forall u, v \in V$
2: $\langle u+v, w\rangle=\langle u, w\rangle+\langle v, w\rangle \forall u, v, w \in V$
3: $\langle\alpha u, v\rangle=\alpha\langle u, v\rangle \forall u, v \in V$ and $\alpha \in F$
4: $\langle u, v\rangle \geq 0 \forall u \in V$ and $\langle u, u\rangle=0 \Leftrightarrow u=0$
Definition 3: let V be vector space with inner product \langle, then $(V,\langle \rangle)$ is called an inner product space, Robert Messer, [1993]

Theorem: let V, W be finite dimensional inner product space and let $T \in L(V, W)$, then there exist a unique linear map $T^{*}: W \rightarrow V$ (3) such that for all $v \in V$ and $w \in W$ we have $\langle T v, w\rangle=\left\langle v, T^{*} w\right\rangle$.
Definition 4: in (3) T^{*} is called ad joint of T, Axler sheldon (2015).
Proof: for fixed $w \in W$, we have the function $f_{w}: V \rightarrow W$ defined by $F_{w}(v)=\langle T v, w\rangle$ (1) which is a linear functional on V by reisz representation theorem there exist a unique $u \in V$ such that $F_{w}=\langle v, u\rangle$ (2) if we set $u=T^{*}(w)$ in (2) we have $F_{w}(v)=\left\langle v, T^{*} w\right\rangle$ (3) from (1) , (3) I can write the result bellow
$\langle T v, w\rangle=\left\langle v, T^{*} w\right\rangle \forall v \in V$, since $u \in V$ is unique, T^{*} is unique.
Now I want to show T^{*} is linear.
Let $(x, y) \in W$ and $(\alpha, \beta) \in K$,
$\left\langle v, T^{*}(\alpha x+\beta y)\right\rangle=\langle T v, \alpha x+\beta y\rangle=\langle T v, \alpha x\rangle+$
$\langle T v, \beta y\rangle=\bar{\alpha}\langle T v, x\rangle+\bar{\beta}\langle T v, y\rangle=\bar{\alpha}\left\langle v, T^{*} x\right\rangle+$
$\bar{\beta}\left\langle v, T^{*} y\right\rangle=\left\langle v, \alpha T^{*} x\right\rangle+\left\langle v, \beta T^{*} y\right\rangle \Rightarrow\left\langle v, T^{*}(\alpha x+\right.$ $\beta y)\rangle=\left\langle v, \alpha T^{*} x\right\rangle+\left\langle v, \beta T^{*} y\right\rangle$
Preposition: let V, W be finite dimensional inner product space over field K then
1: if $(S, T) \in L(V, W)$ then $(S+T)^{*}=S^{*}+T^{*}$ and for $\alpha \in K,(\alpha S)^{*}=\bar{\alpha} S^{*}$
2: if $S \in L(V, W)$ then $S^{* *}=S$ where $S^{* *}=S$
3: if $S, T \in L(V)$ then $(S T)^{* *}=T^{*} S^{*}$ Vikas Bist, Vivek sahai (2017)
Proof 1: for $v \in V, w \in W$ and by definition of ad joint operator we have

$$
\begin{aligned}
\left\langle v,(S+T)^{*} w\right\rangle= & \langle(S+T) v, w\rangle=\langle S v+T v, w\rangle \\
& =\langle S v, w\rangle+\langle T v, w\rangle \\
& =\left\langle v, S^{*} w\right\rangle+\left\langle v, T^{*} w\right\rangle \\
& =\left\langle v,\left(S^{*}+T^{*}\right) w\right\rangle=\left\langle v,(S+T)^{*} w\right\rangle
\end{aligned}
$$

By uniqueness of adjoint mapping we have $(S+T)^{*}=$ $S^{*}+T^{*}$
2: if $S \in L(V, W)$ then by definition of adjoint mapping, for $v \in V, w \in W\left\langle S^{*} w, v\right\rangle=\left\langle w, S^{* *} v\right\rangle$ (1) and also $\left\langle S^{*} w, v\right\rangle=\overline{\left\langle v, S^{*} w\right\rangle}=\overline{\langle S v, w\rangle}=\langle w, S v\rangle$ (2), by (1),
(2) I can write $\left\langle w, S^{* *} v\right\rangle=\langle w, S v\rangle$ for all $v \in V, w \in W$, hence $S^{* *}=S$.
3: for $(u, v) \in V\left\langle u,(S T)^{*} v\right\rangle=\langle(S T) u, v\rangle=$
$\langle S(T u), v\rangle=\left\langle T u, S^{*} v\right\rangle=\left\langle u, T^{*} S^{*} v\right\rangle$ hence $(S T)^{*}=$ $T^{*} S^{*}$.
Preposition: let V, W be finite dimensional inner product space over field K and let $T \in L(V, W)$ if B_{1}, B_{2} be ordered orthonormal basis of V, W respectively, then the matrix representation of T^{*} with respect to these basis is the conjugate transpose of the matrix representation of T with respect to the given basis.
Proof: let $B_{1}=\left\{v_{1}, v_{2}, v_{3}, \ldots v_{m}\right\}$ and $B_{2}=$ $\left\{w_{1}, w_{2}, w_{3}, \ldots, w_{n}\right\}$ be ordered orthonormal basis of V, W respectively
Let $\left[T ; B_{2}, B_{1}\right]=A_{m \times n}=\left(a_{i j}\right)$ and let $\operatorname{Let}\left[T^{*} ; B_{2}, B_{1}\right]=$ $B_{m \times n}=\left(b_{i j}\right)$
Now $\left\langle T v_{j}, w_{i}\right\rangle=\left\langle\sum_{k=1}^{m} a_{k j} w_{k}, w_{i}\right\rangle=\left(a_{i j}\right)$ entry of \in $K^{m \times n}$
$\left(b_{i j}\right)=\left\langle T^{*} w_{j}, v_{i}\right\rangle=\left\langle w_{j}, T v_{i}\right\rangle=\overline{\left\langle T v_{l}, w_{l}\right\rangle}=\left(a_{i j}\right)^{*} \Rightarrow$ $B=A^{*}$ ie $\left(\left[T^{*} ; B_{2}, B_{1}\right]=\left[T ; B_{1}, B_{2}\right]^{*}\right)$
Preposition: let V, W be finite dimensional inner product space over K and let $T \in L(V, W)$ then Vikas Bist, vivek Sahai (2017)
1: $\operatorname{ker} T^{*}=(i m g T)^{\perp}$ and $\operatorname{ker} T^{\perp}=(i m g T)^{*}$
2: $V=\operatorname{ker} T \oplus \operatorname{img} T^{*}$ and $W=\operatorname{img} T \oplus \operatorname{ker} T^{*}$
3: $\operatorname{ker} T^{*} T=\operatorname{ker} T$ and $\operatorname{img} T^{*} T=\operatorname{img} T^{*}$
Proof 1: let $w \in(i m g T)^{\perp} \Leftrightarrow\langle T v, w\rangle=0=\left\langle v, T^{*} w\right\rangle=$ $0 \forall v \in V T^{*} w=0$ (ie $w \in \operatorname{ker} T^{*}$). Hence $(i m g T)^{\perp}=$ $\operatorname{ker} T^{*}$ (1), now replace T by T^{*} in (1) we can get
$\operatorname{ker} T^{* *}=\left(\operatorname{img} T^{*}\right)^{\perp} \Rightarrow \operatorname{ker} T=\left(\operatorname{img} T^{*}\right)^{\perp} \Rightarrow$
$\operatorname{ker} T^{\perp}=\left\{\left(\operatorname{img} T^{*}\right)^{\perp}\right\}^{\perp} \Rightarrow \operatorname{ker} T^{\perp}=\operatorname{img} T^{*}$ (2)
Proof 2: note, let V be vector space over field K and let W be subspace of V and W^{\perp} be orthogonal complement set of W then we can write $V=W \oplus W^{\perp}$ (3)
Now $\operatorname{ker} T=\{v \in V: T(v)=0\}$ is subspace of V and $\operatorname{ker} T^{\perp}$ is its orthogonal complement set then by (3) I can
write $V=\operatorname{ker} T \oplus \operatorname{ker} T^{\perp}$ (4), by (2) and (4) I can get the result $V=\operatorname{ker} T \oplus \operatorname{img} T^{* *}$, by same way I can write $W=\operatorname{img} T \oplus(i m g T)^{\perp}$, (ie img T is subspace of W) so by (3) the result follows.
Then by (1) and (4) I can write $W=\operatorname{img} T \oplus \operatorname{ker} T^{*}$
Proof 3: let $u \in \operatorname{ker} T \Rightarrow T(u)=0 \Rightarrow T^{*}(T u)=0 \Rightarrow$ $T^{*} T(u)=0 \Rightarrow u \in \operatorname{ker} T^{*} T, \quad$ hence $\quad \operatorname{ker} T \subseteq$ $\operatorname{ker} T^{*} T$ (5). If $\quad v \in \operatorname{ker} T^{*} T \Rightarrow\left\langle v, T^{*} T v\right\rangle=0 \Rightarrow$ $\langle T v, T v\rangle=\|T v\|^{2}=0 \Rightarrow v \in \operatorname{ker} T$, hence $\operatorname{ker} T^{*} T \subseteq$ $\operatorname{ker} T$ by (5) and (6) I can write the result $\operatorname{ker} T^{*} T=$ ker T
Let $w \in \operatorname{img} T^{*} T \Rightarrow w=T^{*} T(u)$ for some $u \in V, w=$ $T^{*}(T u) \Rightarrow w \in \operatorname{img} T^{*}$, hence $\operatorname{img} T^{*} T \subseteq \operatorname{img} T^{*}$ (6). $\operatorname{dim}\left(\operatorname{img} T^{*}\right)=\operatorname{dim}(\operatorname{ker} T)^{\perp}$ (7). by (2) and also we have
$\operatorname{dim}(\operatorname{ker} T)^{\perp}=\operatorname{dim} V-\operatorname{dim} T$ (8), by (7) and (8) I can
$\operatorname{dim}\left(\operatorname{img} T^{*}\right)=\operatorname{dim} V-\operatorname{dim}(\operatorname{ker} T) \Rightarrow$
$\operatorname{dim}\left(\operatorname{img} T^{*}\right)=\operatorname{dim} V-\operatorname{dim}\left(\operatorname{ker} T^{*} T\right)$

$$
\Rightarrow \operatorname{dim}\left(i m g T^{*}\right)=\operatorname{dim}\left(i m g T^{*} T\right)
$$

Hence by (6) and (9) I can write img $T^{*} T=i m g T^{*}$.

II. SELF ADJOINT OPERATOR

Let V be inner product space over field K and $T \in L(V)$, we say T is self adjoint if and only if $T=T^{*}(T$ is Hermitian), Marc Lars Lipson, Seymour Lipschutz,(2018)
Preposition: let S, T be self adjoint operator on an inner product space V then we have
a: $S+T$ is self adjoint,
b: $S T$ is self adjoint if and only if $S T=T S$,
c: T^{-1} is self adjoint if T is invertible.

Proof:

a: it is given that S and T are self adjoint (ie $S^{*}=S$ and $T=T^{*}$)
$(S+T)^{*}=S^{*}+T^{*}=S+T$ hence the sum of two self adjoint operator is self adjoint operator.
b: let $(S T)$ be self adjoint operator, I want to show that $S T=T S$
since $(S T)$ is self adjoint, I have $(S T)^{*}=(S T)$ (1) and also $(S T)^{*}=T^{*} S^{*}=T S$ (2), by (1) and (2) I can write $S T=T S$ the invers is also true.
c: the invers an invertible self adjoint operator is also self adjoint $\left(T^{-1}\right)^{*}=T^{-1}$
Preposition: Let T be self adjoint operator on the finite dimensional inner product space $V(K)$, then the root of characteristic polynomial of T are real. Proof: suppose that $K=\mathbb{C}=$ (complex number), let λ be an eigenvalue of T and v corresponding eigenvector (ie $T v=\lambda v \quad v \neq 0$) let λ be a root of characteristic polynomial of T, then we have $\lambda\langle v, v\rangle=\langle\lambda v, v\rangle=$ $\langle T v, v\rangle=\langle v, T v\rangle=\langle v, \lambda v\rangle=\bar{\lambda}\langle v, v\rangle$ hence $\lambda=\bar{\lambda}=$ (ie $\lambda\langle v, v\rangle=\bar{\lambda}\langle v, v\rangle \Rightarrow(\lambda-\bar{\lambda})\langle v, v\rangle=0,\langle v, v\rangle=\|v\|^{2} \neq$
$0 \therefore v \neq 0 \Rightarrow \lambda-\bar{\lambda}=0 \Rightarrow \lambda=\bar{\lambda})$ and $\lambda \in \mathbb{R}$ so λ is real. If V is inner product space over $\mathbb{R}(K=\mathbb{R})$ then $C_{T}(x) \in$ $\mathbb{R}[x]$, so it is possible that the root of $C_{T}(x)$ can be

Journal for Research in Applied Sciences and Biotechnology
complex number but now I want to show that all the roots of $C_{T}(x)$ are real let B be an orthonormal basis of V and $T \in L(V)$ and let $[T]_{B}=A$ since T is self adjoint operator, consider $A \in F^{m \times n}$ as linear operator on the standard inner product space C^{n}, A is self adjoint operator and $C_{T}(x)=C_{A}(x)$ and all root of $C_{A}(x)$ are real, hence the result follows.
Theorem: A self adjoint operator T on a finite dimensional inner product space V is orthogonally diagonalizable, Marc Lars Lipson, Seymour Lipschutz (2018)

Proof: let $\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots, \lambda_{k}\right) \in \mathbb{R}$ be eigenvalues of T with multiplicities $\quad m_{1}, m_{2}, m_{3}, \ldots, m_{k} \quad m_{T}(x)=(x-$ $\left.\lambda_{1}\right)^{m_{1}}\left(x-\lambda_{2}\right)^{m_{2}}\left(x-\lambda_{3}\right)^{m_{3}} \ldots\left(x-\lambda_{k}\right)^{m_{k}}$, by primary decomposition theorem $V=\operatorname{ker}\left(T-\lambda_{1} I\right)^{m_{1}} \oplus \operatorname{ker}(T-$ $\left.\lambda_{2} I\right)^{m_{2}} \oplus \operatorname{ker}\left(T-\lambda_{3} I\right)^{m_{3}} \oplus \ldots \oplus \operatorname{ker}\left(T-\lambda_{k} I\right)^{m_{k}}$ since $\lambda_{i} \in \mathbb{R}$ and $\left(T-\lambda_{2} I\right)$ is also self adjoint $\left(\left(T-\lambda_{i} I\right)^{*}=\right.$ $\left.T^{*}=\lambda_{i} I^{*}=T-\lambda_{i} I\right)$.
Thus for $i=1,2,3, \ldots, k, v_{i} \in \operatorname{ker}\left(T-\lambda_{i} I\right)^{m_{i}} \Rightarrow(T-$ $\left.\lambda_{i} I\right) v_{i}=0\left(T^{k} v=0 \Rightarrow T v=0\right), \Rightarrow v_{i} \in \operatorname{ker}\left(T=\lambda_{i} I\right)$ Note that $\operatorname{ker}\left(T-\lambda_{i} I\right)^{m_{i}}=\operatorname{ker}\left(T-\lambda_{i} I\right)$ for $i=$ $1,2,3, \ldots, k$ then we have $V=\operatorname{ker}\left(T-\lambda_{1} I\right) \oplus \operatorname{ker}\left(T-\lambda_{2} I\right) \oplus \operatorname{ker}(T-$
$\left.\lambda_{3} I\right) \oplus \ldots \oplus \operatorname{ker}\left(T-\lambda_{k} I\right)$ and $\operatorname{dim}\left\{\operatorname{ker}\left(T-\lambda_{i} I\right)\right\}=1 \therefore$ $[T]_{B}=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots, \lambda_{k}\right)$ so T is diagonalizable.
Note that: let V be finite dimensional inner product space over K and let $T \in L(v)$ be self adjoint operator, then

Preposition

1: T is positive definite if and only if eigenvalue of T are positive
2: if and only if there is a positive definite operator $S \in$ $L(v)$ such that $T=S S$ (ie $T=S^{2}$)
3: if and only if there is an invertible operator $S \in L(V)$ such that $T=S^{*} S$ Axler Sheldon (2015)
Proof 1: If λ is an eigenvalue of T then $\lambda \in \mathbb{R}$
Now $T v=\lambda v \Rightarrow \lambda\langle v, v\rangle>0$
Conversely: let $B=\left\{v_{1}, v_{2}, v_{3}, \ldots v_{n}\right\}$ be orthonormal basis of V consisting of eigenvector of T, it is given that $T v_{i}=\lambda_{i} v_{i}$, for $v \in V$ we have $v=\sum_{i=1}^{n} \lambda_{i} v_{i}$ (unique)

$$
\begin{array}{r}
\langle T v, v\rangle=\left\langle\sum_{i=1}^{n} \alpha_{i} T v_{i}, \sum_{j=1}^{n} \alpha_{j} v_{j}\right\rangle=\left\langle\sum_{i=1}^{n} \alpha_{i} \lambda_{i} v_{i}, \sum_{j=1}^{n} \alpha_{j} v_{j}\right\rangle \\
=\sum_{i=1}^{n} \sum_{i=1}^{n} \lambda_{i} \alpha_{i} \bar{\alpha}_{j}\left\langle v_{i}, v_{j}\right\rangle \Rightarrow\langle T v, v\rangle>0
\end{array}
$$

2: consider $\quad T=\lambda_{1} p_{1}+\lambda_{2} p_{2}+\lambda_{3} p_{3}+\cdots+$
$\lambda_{k} p_{k}, \quad \lambda_{i}>0 \quad i=1,2,3, \ldots, k$
Note that $T=S^{2}$,so we can have $S=\sqrt{\lambda_{1}} p_{1}+\sqrt{\lambda_{2}} p_{2}+$ $\sqrt{\lambda_{3}} p_{3}+\cdots+\sqrt{\lambda_{k}} p_{k}$ and $\sqrt{\lambda_{i}}>0$ for $i=1,2,3, \ldots, k$ so the result follows. Convers is obvious from above proof
3: note that $\langle T v, v\rangle=\left\langle S^{*} S v, v\right\rangle=\left\langle S v, S^{*} v\right\rangle=\|S v\|^{2} \geq$ 0 , since S is invertible so $S \neq 0$ hence $\left.\langle T v, v\rangle=\|S v\|^{2}\right\rangle$ $0 \Rightarrow\langle T v, v\rangle$, and T is positive definite.

III. CONCLOSION

Undoubtedly, many of the discussed spaces in the fields of engineering are vector spaces, where inner product spaces and their operators are very important. The properties discussed in this article can help us in solving the problems in these spaces.

Adjoint of linear transformation is widely used in solving systems of linear equations, systems of differential equations in the fields of engineering and computer science. In this article, some of its properties have been researched and investigated, which can help us in these areas.

REFERENCES

[1] Axler Sheldon, linear algebra done right, springer publisher (2015)
[2] E. F. Robertson, T. S. Blyth, basic linear algebra, Springer (2007)
[3] K. Hoffman and R. Kunze, Linear Algebra, Prentice Hall (1971)
[4] Marc Lars Lipson, Seymour Lipschutz, Linear Algebra, McGra-Hill Education (2018)
[5] Raiza. Usmani, Applied linear algebra, Marcel, Dekker. INC (1987)
[6] Robert Messer, linear algebra gateway to mathematics, Herper Collins College Publisher (1993)
[7] Vikas Bist, Vivek Sahai, Linear Algebra, Narosa (2017)

