
 

 

163   This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) 

 

ISSN: 2583-4053 

Volume-1 Issue-4 || October 2022 || PP. 163-165 
 

https://doi.org/10.55544/jrasb.1.4.22 

 

Journal for Research in Applied Sciences 

and Biotechnology 

www.jrasb.com 

 

Investigation of Adjoint of Linear Transformation and Some Its 

Important Properties 
 

Najibullah Yousefi1, Laila Popalzai2 and Hadia Jalal3 

1Teaching Assistant, Department of Higher Mathematics, Electromechanics Faculty, Kabul Polytechnic University, 

BaghBala, Kabul, AFGHANISTAN. 
2Sinior Teaching Assistant, Department of Higher Mathematics, Electromechanics Faculty, Kabul Polytechnic University, 

BaghBala, Kabul, AFGHANISTAN. 
3Sinior Teaching Assistant, Department of Higher Mathematics, Electromechanics Faculty, Kabul Polytechnic University, 

BaghBala, Kabul, AFGHANISTAN. 
 

1Corresponding Author: n.yousefi@kpu.edu.af 

 

 
www.jrasb.com || Vol. 1 No. 4 (2022): October Issue 

 

Received: 20-09-2022 Revised: 11-10-2022 Accepted: 21-10-2022 

 

ABSTRACT 

 
Linear operator on inner product space is including adjoint operator, self adjoint operator, unitary operator, normal 

operator ,… (self adjoint operator and unitary operator is normal operator but convers is not true at all) in this paper I discussed 

about adjoint operator and self adjoint operator of linear transformation and some important properties. 

 In this paper first I defined the linear transformation, inner product space, adjoint linear transformation, self adjoint 

operator and very important relevant properties and theorem. 
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I. INTRODUCTION 
 

Definition 1: let 𝑉 and 𝑊 be vector spaces over field 𝐾 , 

A mapping from 𝑉 to 𝑊 denoted by 𝑇: 𝑉 →  𝑊   (1) is 

called linear transformation if 𝑇 hold the following 

properties 

1: 𝑇(𝑢 + 𝑣) = 𝑇(𝑢) + 𝑇(𝑣) for all 𝑢 , 𝑣 ∈ 𝑉  

2: 𝑇(𝛼𝑢) = 𝛼𝑇(𝑢) for 𝛼 ∈ 𝐾 

Definition 2: Let 𝑉 be vector space over field 𝐾 , an inner 

product over vector space 𝑉 denoted by 〈, 〉  is a map from 

𝑉 × 𝑉 → 𝐹 satisfy the given properties  

1:〈𝑢, 𝑣〉  = 〈𝑢, 𝑣〉̅̅ ̅̅ ̅̅ ̅, the complex conjugate of 〈𝑢, 𝑣〉  

∀ 𝑢, 𝑣 ∈ 𝑉  

2: 〈𝑢 + 𝑣, 𝑤〉 = 〈𝑢, 𝑤〉 + 〈𝑣, 𝑤〉  ∀ 𝑢, 𝑣, 𝑤 ∈ 𝑉  

3: 〈𝛼𝑢, 𝑣〉  = 𝛼〈𝑢, 𝑣〉  ∀𝑢, 𝑣 ∈ 𝑉 and 𝛼 ∈ 𝐹 

4: 〈𝑢, 𝑣〉 ≥ 0 ∀𝑢 ∈ 𝑉 and 〈𝑢, 𝑢〉 = 0 ⇔ 𝑢 = 0  

Definition 3: let 𝑉 be vector space with inner product 〈, 〉  
then (𝑉, 〈  〉) is called an inner product space, Robert 

Messer, [1993] 

Theorem: let 𝑉 ,  𝑊 be finite dimensional inner product 

space and let 𝑇 ∈ 𝐿(𝑉, 𝑊), then there exist a unique linear 

map 𝑇∗: 𝑊 → 𝑉 (3)  such that for all 𝑣 ∈ 𝑉 and 𝑤 ∈ 𝑊 

we have 〈𝑇𝑣, 𝑤〉 = 〈𝑣, 𝑇∗𝑤〉. 

Definition 4: in (3) 𝑇∗ is called ad joint of 𝑇 , Axler 

sheldon (2015). 

Proof: for fixed 𝑤 ∈ 𝑊, we have the function 𝑓𝑤: 𝑉 → 𝑊 

defined by 𝐹𝑤(𝑣) = 〈𝑇𝑣, 𝑤〉  (1) which is a linear 

functional on 𝑉 by reisz representation theorem there 

exist a unique 𝑢 ∈ 𝑉 such that 𝐹𝑤 = 〈𝑣, 𝑢〉   (2)  if we set 

𝑢 = 𝑇∗(𝑤)  in (2) we have 𝐹𝑤(𝑣) = 〈𝑣, 𝑇∗𝑤〉  (3) from 

(1) , (3) I can write the result bellow 
〈𝑇𝑣, 𝑤〉 = 〈𝑣, 𝑇∗𝑤〉 ∀𝑣 ∈ 𝑉   , since 𝑢 ∈ 𝑉 is unique, 𝑇∗ 

is unique. 

Now I want to show 𝑇∗ is linear. 

Let (𝑥, 𝑦) ∈ 𝑊 and (𝛼, 𝛽) ∈ 𝐾, 
〈𝑣, 𝑇∗(𝛼𝑥 + 𝛽𝑦)〉 = 〈𝑇𝑣, 𝛼𝑥 + 𝛽𝑦〉 = 〈𝑇𝑣, 𝛼𝑥〉 +
〈𝑇𝑣, 𝛽𝑦〉 = 𝛼̅〈𝑇𝑣, 𝑥〉 + 𝛽̅〈𝑇𝑣, 𝑦〉 = 𝛼̅〈𝑣, 𝑇∗𝑥〉 +
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𝛽̅〈𝑣, 𝑇∗𝑦〉 = 〈𝑣, 𝛼𝑇∗𝑥〉 + 〈𝑣, 𝛽𝑇∗𝑦〉 ⟹ 〈𝑣, 𝑇∗(𝛼𝑥 +
𝛽𝑦)〉 = 〈𝑣, 𝛼𝑇∗𝑥〉 + 〈𝑣, 𝛽𝑇∗𝑦〉  
Preposition: let 𝑉, 𝑊 be finite dimensional inner product 

space over field 𝐾 then 

1: if (𝑆, 𝑇) ∈ 𝐿(𝑉, 𝑊) then (𝑆 + 𝑇)∗ = 𝑆∗ + 𝑇∗ and for 

 𝐾 , (𝛼𝑆)∗ = 𝛼̅𝑆∗ 

2: if 𝑆 ∈ 𝐿(𝑉, 𝑊) then 𝑆∗∗ = 𝑆 where 𝑆∗∗ = 𝑆 

3: if 𝑆, 𝑇 ∈ 𝐿(𝑉) then (𝑆𝑇)∗∗ = 𝑇∗𝑆∗Vikas Bist , Vivek 

sahai (2017) 

Proof 1: for 𝑣 ∈ 𝑉, 𝑤 ∈ 𝑊 and by definition of ad joint 

operator we have 
〈𝑣, (𝑆 + 𝑇)∗𝑤〉 = 〈(𝑆 + 𝑇)𝑣, 𝑤〉 = 〈𝑆𝑣 + 𝑇𝑣, 𝑤〉

= 〈𝑆𝑣, 𝑤〉 + 〈𝑇𝑣, 𝑤〉
= 〈𝑣, 𝑆∗𝑤〉 + 〈𝑣, 𝑇∗𝑤〉
= 〈𝑣, (𝑆∗ + 𝑇∗)𝑤〉 = 〈𝑣, (𝑆 + 𝑇)∗𝑤〉 

By uniqueness of adjoint mapping we have (𝑆 + 𝑇)∗ =
𝑆∗ + 𝑇∗ 

2: if 𝑆 ∈ 𝐿(𝑉, 𝑊) then by definition of adjoint mapping, 

for 𝑣 ∈ 𝑉 , 𝑤 ∈ 𝑊 〈𝑆∗𝑤, 𝑣〉 = 〈𝑤, 𝑆∗∗𝑣〉  (1) and also 

〈𝑆∗𝑤, 𝑣〉 = 〈𝑣, 𝑆∗𝑤〉̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 〈𝑆𝑣, 𝑤〉̅̅ ̅̅ ̅̅ ̅̅ ̅ = 〈𝑤, 𝑆𝑣〉  (2) , by (1) , 

(2) I can write 〈𝑤, 𝑆∗∗𝑣〉 = 〈𝑤, 𝑆𝑣〉 for all 𝑣 ∈ 𝑉, 𝑤 ∈ 𝑊 

, hence 𝑆∗∗ = 𝑆. 

3: for (𝑢, 𝑣) ∈ 𝑉  〈𝑢, (𝑆𝑇)∗𝑣〉 = 〈(𝑆𝑇)𝑢, 𝑣〉 =
〈𝑆(𝑇𝑢), 𝑣〉 = 〈𝑇𝑢, 𝑆∗𝑣〉 = 〈𝑢, 𝑇∗𝑆∗𝑣〉  hence (𝑆𝑇)∗ =
𝑇∗𝑆∗. 

Preposition: let 𝑉, 𝑊 be finite dimensional inner product 

space over field 𝐾 and let 𝑇 ∈ 𝐿(𝑉, 𝑊) if 𝐵1, 𝐵2 be 

ordered orthonormal basis of 𝑉, 𝑊 respectively, then the 

matrix representation of  𝑇∗ with respect to these basis is 

the conjugate transpose of the matrix representation of 𝑇 

with respect to the given basis. 

Proof: let 𝐵1 = {𝑣1, 𝑣2, 𝑣3, … 𝑣𝑚} and 𝐵2 =
{𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑛} be ordered orthonormal basis of 𝑉, 𝑊 

respectively 

Let [𝑇; 𝐵2 , 𝐵1] = 𝐴𝑚×𝑛 = (𝑎𝑖𝑗) and let Let [𝑇∗; 𝐵2, 𝐵1] =

𝐵𝑚×𝑛 = (𝑏𝑖𝑗) 

Now 〈𝑇𝑣𝑗 , 𝑤𝑖〉 = 〈∑ 𝑎𝑘𝑗𝑤𝑘
𝑚
𝑘=1 , 𝑤𝑖〉 = (𝑎𝑖𝑗) entry of ∈

𝐾𝑚×𝑛 

(𝑏𝑖𝑗) = 〈𝑇∗𝑤𝑗 , 𝑣𝑖〉 = 〈𝑤𝑗 , 𝑇𝑣𝑖〉 = 〈𝑇𝑣𝑖, 𝑤𝑖〉̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = (𝑎𝑖𝑗)
∗

⇒

𝐵 = 𝐴∗ ie ([𝑇∗; 𝐵2, 𝐵1] = [𝑇; 𝐵1, 𝐵2]∗) 

Preposition: let 𝑉, 𝑊 be finite dimensional inner product 

space over 𝐾 and let 𝑇 ∈ 𝐿(𝑉, 𝑊) then Vikas Bist , vivek 

Sahai (2017)  

1: ker 𝑇∗ = (𝑖𝑚𝑔 𝑇)⊥ and ker 𝑇⊥ = (𝑖𝑚𝑔 𝑇)∗  

2: 𝑉 = ker 𝑇 ⊕ 𝑖𝑚𝑔 𝑇∗ and 𝑊 = 𝑖𝑚𝑔 𝑇 ⨁ ker 𝑇∗  

3: ker 𝑇∗𝑇 = ker 𝑇 and 𝑖𝑚𝑔 𝑇∗𝑇 = 𝑖𝑚𝑔 𝑇∗ 

Proof 1: let 𝑤 ∈ (𝑖𝑚𝑔 𝑇)⊥ ⇔ 〈𝑇𝑣, 𝑤〉 = 0 = 〈𝑣, 𝑇∗𝑤〉 =
0  ∀𝑣 ∈ 𝑉  𝑇∗𝑤 = 0  (ie 𝑤 ∈ ker 𝑇∗). Hence (𝑖𝑚𝑔 𝑇)⊥ =
ker 𝑇∗  (1) ,now replace 𝑇 by 𝑇∗ in (1) we can get 

ker 𝑇∗∗ = (𝑖𝑚𝑔 𝑇∗)⊥ ⇒ ker 𝑇 = (𝑖𝑚𝑔 𝑇∗)⊥ ⇒
ker 𝑇⊥ = {(𝑖𝑚𝑔 𝑇∗)⊥}⊥ ⇒ ker 𝑇⊥ = 𝑖𝑚𝑔 𝑇∗  (2)  

Proof 2: note, let 𝑉 be vector space over field 𝐾 and let 

𝑊 be subspace of 𝑉 and 𝑊⊥ be orthogonal complement 

set of 𝑊 then we can write 𝑉 = 𝑊⨁𝑊⊥  (3) 

Now ker 𝑇 = {𝑣 ∈ 𝑉: 𝑇(𝑣) = 0} is subspace of 𝑉 and 

ker 𝑇⊥ is its orthogonal complement set then by (3) I can 

write 𝑉 = ker 𝑇 ⨁ ker 𝑇⊥   (4), by (2) and (4) I can get 

the result 𝑉 = ker 𝑇 ⨁ 𝑖𝑚𝑔 𝑇∗*  , by same way I can 

write 𝑊 = 𝑖𝑚𝑔𝑇 ⨁(𝑖𝑚𝑔 𝑇)⊥ ,( ie 𝑖𝑚𝑔 𝑇 is subspace of 

𝑊 ) so by (3) the result follows. 

Then by (1) and (4) I can write 𝑊 = 𝑖𝑚𝑔 𝑇 ⨁ ker 𝑇∗  

Proof 3: let 𝑢 ∈ ker 𝑇 ⇒ 𝑇(𝑢) = 0 ⇒ 𝑇∗(𝑇𝑢) = 0 ⇒
𝑇∗𝑇(𝑢) = 0 ⇒ 𝑢 ∈ ker 𝑇∗𝑇, hence ker 𝑇 ⊆
ker 𝑇∗𝑇   (5). If 𝑣 ∈ ker 𝑇∗𝑇 ⇒ 〈𝑣, 𝑇∗𝑇𝑣〉 = 0 ⇒
〈𝑇𝑣, 𝑇𝑣〉 = ‖𝑇𝑣‖2 = 0 ⇒ 𝑣 ∈ ker 𝑇, hence ker 𝑇∗𝑇 ⊆
ker 𝑇 by (5) and (6) I can write the result ker 𝑇∗𝑇 =
ker 𝑇 

Let 𝑤 ∈ 𝑖𝑚𝑔 𝑇∗𝑇 ⇒ 𝑤 = 𝑇∗𝑇(𝑢) for some 𝑢 ∈ 𝑉 , 𝑤 =
𝑇∗(𝑇𝑢) ⇒ 𝑤 ∈ 𝑖𝑚𝑔 𝑇∗, hence 𝑖𝑚𝑔 𝑇∗𝑇 ⊆ 𝑖𝑚𝑔 𝑇∗  (6). 

dim(𝑖𝑚𝑔 𝑇∗) = dim(ker 𝑇)⊥   (7). by (2) and also we 

have  

dim(ker 𝑇)⊥ = dim 𝑉 − dim 𝑇  (8) , by (7) and (8) I 

can write 

 dim(𝑖𝑚𝑔 𝑇∗) = dim 𝑉 − dim(ker 𝑇) ⇒
dim(𝑖𝑚𝑔 𝑇∗) = dim 𝑉 − dim(ker 𝑇∗𝑇) 

⇒ dim(𝑖𝑚𝑔 𝑇∗) = dim(𝑖𝑚𝑔 𝑇∗𝑇)  (9) 

Hence by (6) and (9) I can write 𝑖𝑚𝑔 𝑇∗𝑇 = 𝑖𝑚𝑔 𝑇∗. 

 

II. SELF ADJOINT OPERATOR 
 

Let 𝑉 be inner product space over field 𝐾 and 𝑇 ∈ 𝐿(𝑉), 

we say 𝑇 is self adjoint if and only if 𝑇 = 𝑇∗(𝑇 is 

Hermitian), Marc Lars Lipson, Seymour 

Lipschutz,(2018) 

Preposition: let 𝑆, 𝑇 be self adjoint operator on an inner 

product space 𝑉 then we have  

a: 𝑆 +  𝑇 is self adjoint,  

b: 𝑆𝑇 is self adjoint if and only if 𝑆𝑇 = 𝑇𝑆,  

c: 𝑇−1  is self adjoint if 𝑇 is invertible. 

Proof:  

a: it is given that 𝑆 and 𝑇 are self adjoint (ie 𝑆∗ = 𝑆 and 

𝑇 = 𝑇∗) 
(𝑆 + 𝑇)∗ = 𝑆∗ + 𝑇∗ = 𝑆 + 𝑇 hence the sum of two self 

adjoint operator is self adjoint operator. 

 b: let (𝑆𝑇) be self adjoint operator, I want to show that 

𝑆𝑇 = 𝑇𝑆 

since (𝑆𝑇) is self adjoint, I have (𝑆𝑇)∗ = (𝑆𝑇)   (1) and 

also (𝑆𝑇)∗ = 𝑇∗𝑆∗ = 𝑇𝑆  (2), by (1) and (2) I can write 

𝑆𝑇 = 𝑇𝑆 the invers is also true.  

c: the invers an invertible self adjoint operator is also self 

adjoint (𝑇−1)∗ = 𝑇−1 

Preposition: Let 𝑇 be self adjoint operator on the finite 

dimensional inner product space 𝑉(𝐾), then the root of 

characteristic polynomial of T are real. 

Proof: suppose that 𝐾 = ℂ = (complex number), let  be 

an eigenvalue of 𝑇 and 𝑣 corresponding eigenvector (ie 

𝑇𝑣 = 𝜆𝑣   𝑣 ≠ 0) let  be a root of characteristic 

polynomial of 𝑇 , then we have 𝜆〈𝑣, 𝑣〉 = 〈𝜆𝑣, 𝑣〉 =
〈𝑇𝑣, 𝑣〉 = 〈𝑣, 𝑇𝑣〉 = 〈𝑣, 𝜆𝑣〉 = 𝜆̅〈𝑣, 𝑣〉 hence  =  ̅ = (ie 

〈𝑣, 𝑣〉 = 𝜆̅〈𝑣, 𝑣〉 ⇒ (𝜆 − 𝜆̅)〈𝑣, 𝑣〉 = 0, 〈𝑣, 𝑣〉 = ‖𝑣‖2 ≠

0 ∴ 𝑣 ≠ 0 ⇒ 𝜆 − 𝜆̅ = 0 ⇒ 𝜆 = 𝜆̅)and  ∈ ℝ so  is real. 

If 𝑉 is inner product space over ℝ (𝐾 = ℝ) then 𝐶𝑇(𝑥) ∈
ℝ[𝑥], so it is possible that the root of 𝐶𝑇(𝑥) can be 
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complex number but now I want to show that all the roots 

of 𝐶𝑇(𝑥) are real let 𝐵 be an orthonormal basis of 𝑉 and 

𝑇 ∈ 𝐿(𝑉) and let [𝑇]𝐵 = 𝐴 since 𝑇 is self adjoint operator, 

consider 𝐴 ∈ 𝐹𝑚×𝑛 as linear operator on the standard 

inner product space 𝐶𝑛, 𝐴 is self adjoint operator and 

𝐶𝑇(𝑥) = 𝐶𝐴(𝑥) and all root of 𝐶𝐴(𝑥) are real, hence the 

result follows. 

Theorem: A self adjoint operator 𝑇 on a finite 

dimensional inner product space 𝑉 is orthogonally 

diagonalizable, Marc Lars Lipson, Seymour Lipschutz 

(2018) 

Proof: let (𝜆1, 𝜆2, 𝜆3, … , 𝜆𝑘) ∈ ℝ be eigenvalues of T with 

multiplicities 𝑚1, 𝑚2, 𝑚3, … , 𝑚𝑘 𝑚𝑇(𝑥) = (𝑥 −
𝜆1)𝑚1(𝑥 − 𝜆2)𝑚2(𝑥 − 𝜆3)𝑚3 … (𝑥 − 𝜆𝑘)𝑚𝑘  , by primary 

decomposition theorem 𝑉 = ker(𝑇 − 𝜆1𝐼)𝑚1 ⨁ ker(𝑇 −
𝜆2𝐼)𝑚2 ⨁ ker(𝑇 − 𝜆3𝐼)𝑚3 ⨁ … ⨁ ker(𝑇 − 𝜆𝑘𝐼)𝑚𝑘 since 

𝜆𝑖 ∈ ℝ and (𝑇 − 𝜆2𝐼) is also self adjoint ( (𝑇 − 𝜆𝑖𝐼)∗ =
𝑇∗ = 𝜆𝑖𝐼

∗ = 𝑇 − 𝜆𝑖𝐼 ). 

Thus for 𝑖 = 1, 2, 3, … , 𝑘 , 𝑣𝑖 ∈ ker(𝑇 − 𝜆𝑖𝐼)𝑚𝑖 ⇒ (𝑇 −
𝜆𝑖𝐼)𝑣𝑖 = 0 ( 𝑇𝑘𝑣 = 0 ⇒ 𝑇𝑣 = 0 ), ⇒ 𝑣𝑖 ∈ ker(𝑇 = 𝜆𝑖𝐼) 

 Note that ker(𝑇 − 𝜆𝑖𝐼)𝑚𝑖 = ker(𝑇 − 𝜆𝑖𝐼) for 𝑖 =
1, 2, 3, … , 𝑘 then we have 

𝑉 = ker(𝑇 − 𝜆1𝐼) ⨁ ker(𝑇 − 𝜆2𝐼) ⨁ ker(𝑇 −
𝜆3𝐼) ⨁ … ⨁ ker(𝑇 − 𝜆𝑘𝐼) and dim{ker(𝑇 − 𝜆𝑖𝐼)} = 1 ∴
[𝑇]𝐵 = 𝑑𝑖𝑎𝑔(𝜆1, 𝜆2, 𝜆3, … , 𝜆𝑘) so 𝑇 is diagonalizable. 

Note that: let 𝑉 be finite dimensional inner product space 

over 𝐾 and let 𝑇 ∈ 𝐿(𝑣) be self adjoint operator, then 

Preposition 

1: 𝑇 is positive definite if and only if eigenvalue of 𝑇 are 

positive 

2: if and only if there is a positive definite operator 𝑆 ∈
𝐿(𝑣) such that 𝑇 = 𝑆𝑆 (ie 𝑇 = 𝑆2 ) 

3: if and only if there is an invertible operator 𝑆 ∈ 𝐿(𝑉) 

such that 𝑇 = 𝑆∗𝑆 Axler Sheldon (2015) 

Proof 1 : If  is an eigenvalue of 𝑇 then  ∈ ℝ 

Now 𝑇𝑣 = 𝜆𝑣 ⇒ 𝜆〈𝑣, 𝑣〉 > 0 

Conversely: let 𝐵 = {𝑣1, 𝑣2, 𝑣3, … 𝑣𝑛} be orthonormal 

basis of 𝑉 consisting of eigenvector of 𝑇 , it is given that 

𝑇𝑣𝑖 = 𝜆𝑖𝑣𝑖 , for 𝑣 ∈ 𝑉 we have 𝑣 = ∑ 𝜆𝑖𝑣𝑖
𝑛
𝑖=1  (unique) 

〈𝑇𝑣, 𝑣〉 = 〈∑ 𝛼𝑖𝑇𝑣𝑖

𝑛

𝑖=1

, ∑ 𝛼𝑗𝑣𝑗

𝑛

𝑗=1

〉 = 〈∑ 𝛼𝑖𝜆𝑖𝑣𝑖

𝑛

𝑖=1

, ∑ 𝛼𝑗𝑣𝑗

𝑛

𝑗=1

〉

= ∑ ∑ 𝜆𝑖𝛼𝑖𝛼𝑗̅̇〈𝑣𝑖 , 𝑣𝑗〉

𝑛

𝑖=1

𝑛

𝑖=1

⇒ 〈𝑇𝑣, 𝑣〉 > 0 

2: consider 𝑇 = 𝜆1𝑝1 + 𝜆2𝑝2 + 𝜆3𝑝3 + ⋯ +
𝜆𝑘𝑝𝑘  ,     𝜆𝑖 > 0    𝑖 = 1,2,3, … , 𝑘  

Note that 𝑇 = 𝑆2 ,so we can have 𝑆 = √𝜆1𝑝1 + √𝜆2𝑝2 +

√𝜆3𝑝3 + ⋯ + √𝜆𝑘𝑝𝑘  and √𝜆𝑖 > 0 for 𝑖 = 1,2,3, … , 𝑘 so 

the result follows. 

Convers is obvious from above proof 

3: note that 〈𝑇𝑣, 𝑣〉 = 〈𝑆∗𝑆𝑣, 𝑣〉 = 〈𝑆𝑣, 𝑆∗𝑣〉 = ‖𝑆𝑣‖2 ≥
0 , since 𝑆 is invertible so 𝑆  0 hence 〈𝑇𝑣, 𝑣〉 = ‖𝑆𝑣‖2 >
0 ⇒ 〈𝑇𝑣, 𝑣〉, and 𝑇 is positive definite. 

 

III. CONCLOSION 
 

Undoubtedly, many of the discussed spaces in 

the fields of engineering are vector spaces, where inner 

product spaces and their operators are very important. The 

properties discussed in this article can help us in solving 

the problems in these spaces. 

Adjoint of linear transformation is widely used 

in solving systems of linear equations, systems of 

differential equations in the fields of engineering and 

computer science. In this article, some of its properties 

have been researched and investigated, which can help us 

in these areas. 
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