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ABSTRACT 

 
This paper presents a novel extension of fuzzy calculus by integrating it with conformable calculus to introduce the 

fuzzy conformable derivative, a mathematical tool designed to handle the complexities of systems characterized by both 

uncertainty and fractional-order dynamics. The study begins by defining the fuzzy conformable derivative of order Ψ, which 

combines the ability of fuzzy calculus to model vagueness with the flexibility of conformable derivatives to capture non-integer 

order behaviors. This concept is further extended to higher orders, specifically the second order (2Ψ) and arbitrary order pΨ, 

enabling the modeling of more complex, multi-order dynamics in fuzzy-valued functions. Key contributions include the formal 

definitions of these derivatives, the establishment of their properties, and the development of operational rules that extend 

classical calculus operations to fuzzy systems. Additionally, the paper demonstrates how these derivatives can be applied to solve 

fuzzy differential equations and approximate functions using Taylor series expansions. While the fuzzy conformable derivative 

offers a powerful framework for modeling complex systems, the study also identifies certain limitations, such as potential 

unboundedness of solutions and the non-adherence to classical mathematical laws in higher-order cases. Overall, this work 

provides a comprehensive approach to differentiating fuzzy-valued functions in systems where uncertainty and fractional-order 

dynamics play a critical role. The proposed methods open up new avenues for research and application in fields such as control 

systems, economics, and engineering, where traditional calculus methods may not suffice. Future research directions include 

refining these methods, exploring computational techniques, and applying the framework to a broader range of real-world 

problems. 

 

Keywords- Fuzzy Conformable Differential Calculus, Novel Approaches, Preliminary Observations, Fuzzy Logic Systems, 

Mathematical Analysis. 

 

 

 

I. INTRODUCTION 
 

In many real-world scenarios, the data we 

encounter is inherently imprecise or vague. For instance, 

consider the fluctuating water levels of a river or the 

varying temperature within a room—both phenomena 

defy exact measurement. Traditional mathematical tools, 

which rely on precise numbers, often struggle to model 

such uncertainty. This challenge is effectively addressed 

by fuzzy mathematics, a branch that utilizes fuzzy 

numbers to capture the essence of imprecise data. Fuzzy 

sets, initially introduced by Zadeh in the mid-20th 

century, extend the concept of classical sets to allow for 

degrees of membership, making them particularly useful 

for representing uncertain quantities[1]. Fuzzy calculus, 

a core area of fuzzy mathematics, builds upon these 

concepts to perform operations on fuzzy numbers. It was 

first developed by Chang and Zadeh, with further 

advancements by Bede and others who sought to 

overcome limitations such as the non-existence of 

derivatives for certain fuzzy-valued functions and the 

unbounded nature of solutions derived from these 

derivatives[2]. Despite these advancements, challenges 

remain in applying fuzzy calculus to solve differential 

equations, particularly due to the lack of a unified 

approach that combines the flexibility of fractional 

calculus with the specificity of fuzzy calculus. Fractional 

calculus, another extension of classical calculus, allows 
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 for the definition of derivatives and integrals of non-

integer orders, offering a vast range of possibilities for 

modeling dynamic systems[3]. While fractional 

derivatives, such as those proposed by Riemann-

Liouville and Caputo, have been instrumental in 

capturing complex phenomena across various fields, 

they are not without limitations. Issues such as the non-

locality of these derivatives, and the complexities in 

applying standard mathematical rules (e.g., product rule, 

chain rule) hinder their broader application. 

Conformable calculus, a relatively recent development, 

addresses some of these limitations by defining 

fractional derivatives in a manner that closely resembles 

the classical derivative. This approach retains many of 

the desirable properties of traditional calculus, such as 

locality and ease of application, while extending the 

calculus to fractional orders[4]. The conformable 

derivative, first introduced by Khalil et al., has since 

attracted significant attention for its potential to model 

real-world problems with greater accuracy. 

Given the complementary strengths of fuzzy 

calculus and conformable calculus, combining these two 

frameworks presents a promising avenue for addressing 

complex, real-world problems characterized by both 

uncertainty and fractional dynamics. The fuzzy 

conformable calculus merges the ability of fuzzy 

calculus to handle vagueness with the flexibility of 

conformable calculus to model non-integer order 

dynamics[5]. This paper builds on the initial attempts to 

integrate these fields by introducing the concept of a 

fuzzy conformable derivative of order 2Ψ and 

generalizing it to derivatives of arbitrary order pΨ. The 

primary contributions of this work include the 

establishment of fundamental properties of fuzzy 

conformable derivatives, the development of operational 

rules for these derivatives, and the application of these 

concepts to solve fuzzy conformable differential 

equations[6]. The structure of this paper is as follows: 

Section 2 provides an overview of the basic concepts in 

fuzzy and conformable differential calculus. Section 3 

introduces the fuzzy conformable derivative of order Ψ, 

while Section 4 extends this to the second order (2Ψ). 

Section 5 generalizes the concept further to derivatives 

of order pΨ. Finally, the paper concludes with a 

summary of the key findings and potential future 

research directions. 

 

II. BASIC CONCEPTS 
 

This section lays the groundwork for the paper 

by introducing the foundational concepts of fuzzy 

calculus and conformable calculus, which are crucial for 

understanding the proposed fuzzy conformable calculus. 

2.1 Fuzzy Calculus 

Fuzzy calculus extends traditional calculus to 

handle data that is inherently uncertain or imprecise. 

This extension is built on the concept of fuzzy sets and 

fuzzy numbers[7], which generalize classical sets and 

real numbers to accommodate degrees of uncertainty. 

Fuzzy Sets and Fuzzy Numbers   

A fuzzy set, as initially defined by Zadeh, is a 

set where each element has a degree of membership 

represented by a value between 0 and 1, rather than a 

binary membership as in classical sets. Formally, a fuzzy 

set η is a mapping η: ℝ → [0, 1], where each real 

number is associated with a membership value that 

indicates the extent to which it belongs to the set. 

A fuzzy number is a special type of fuzzy set 

that satisfies additional properties, making it suitable for 

representing imprecise quantities in a more structured 

way[8]. According to the definition provided by Dubois 

and Prade, a fuzzy number η must satisfy the following 

properties: 

- Convexity: The membership function of a fuzzy 

number is convex, meaning that for any two points 

within the fuzzy number, the line segment connecting 

them lies within the fuzzy set. 

- Normality: There exists at least one point in the fuzzy 

set where the membership value is 1. 

- Upper Semi-Continuity: The membership function is 

upper semi-continuous, ensuring that small changes in 

the input do not lead to abrupt changes in the 

membership value. 

- Compact Support: The fuzzy number is defined over 

a finite interval, beyond which the membership function 

is zero. 

The γ-cut of a fuzzy number η, denoted as [η]γ, 

is a crucial concept in fuzzy calculus. It represents the 

set of all values that have a membership degree greater 

than or equal to γ. For example, the γ-cuts of a triangular 

fuzzy number η, defined by the ordered triple (a, b, c), 

are given by: 

· (η∗)γ=a+(b−a)γ 

· (η∗)γ=c−(c−b)γ(η^)γ = c - (c - b)γ(η∗)γ=c−(c−b)γ 

 

These γ-cuts are used to perform arithmetic 

operations on fuzzy numbers, extending operations like 

addition, subtraction, and multiplication from real 

numbers to fuzzy numbers. 

Arithmetic Operations on Fuzzy Numbers   

The arithmetic operations on fuzzy numbers are 

generalized from operations on real intervals. For two 

fuzzy numbers η and υ, with γ-cuts [η]γ = [(η*)γ, (η*)γ] 

and [υ]γ = [(υ*)γ, (υ*)γ], the following operations are 

defined: 

- Addition: [η + v] γ = [(η*) γ + (v*) γ, (η*) γ + (v*) γ] 

- Subtraction: [η - v] γ = [(η*) γ - (v*) γ, (η*) γ - (v*) γ] 

- Scalar Multiplication: [α. η] γ =

{
[α(η ∗)γ, α(η ∗)γ], 𝑖𝑓α < 0

[α(η ∗)γ, α(η ∗)γ], 𝑖𝑓 α < 0
 

 

These operations allow for the manipulation of 

fuzzy numbers in a manner analogous to real numbers 

but with the added capability of handling uncertainty. 
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 Fuzzy-Valued Functions and Derivatives   

A fuzzy-valued function is a function that maps 

an interval of real numbers to the space of fuzzy 

numbers. Such functions can be represented in γ-cuts 

form as: 

[Φ(v)] γ = [(Φ*) γ(v), (Φ*) γ (v)] 

 

The concept of differentiating fuzzy-valued 

functions is central to fuzzy calculus. The Hukuhara 

derivative (or H-derivative) is one of the earliest 

methods introduced to define the derivative of a fuzzy-

valued function. However, this method is limited as it 

does not exist for all fuzzy-valued functions, and the 

solutions obtained are often unbounded. 

To overcome these limitations, strongly 

generalized differentiability was introduced. A fuzzy-

valued function Φ is strongly generalized differentiable 

at a point vo if it satisfies certain conditions involving H-

differences[9]. Depending on these conditions, the 

function can be classified as differentiable of type (1) or 

differentiable of type (2). This classification allows for a 

more comprehensive approach to differentiating fuzzy-

valued functions, accommodating cases where 

traditional derivatives do not exist. 

2.2 Conformable Calculus 

Conformable calculus is a branch of fractional 

calculus that provides a natural extension of the classical 

derivative, enabling the definition of derivatives of non-

integer orders while retaining many of the desirable 

properties of classical derivatives[10]. 

Conformable Derivative   

The conformable derivative of order Ψ for a 

real-valued function Φ is defined as: 

Φ Ψ(v) = lim
𝜃→0

Φ(v+ θ𝑣1−Ψ)−Φ(v) 

𝜃
, Ψ ∈ (0,1).This 

definition ensures that the conformable derivative 

becomes identical to the classical derivative when Ψ = 1, 

thereby acting as a natural generalization. 

Properties of Conformable Derivatives   

- The conformable derivative maintains locality, making 

it suitable for investigating properties related to local 

scaling or fractional differentiability. 

- It satisfies the relation:  ΦΨ(v) = 𝑣1−Ψ Φ’(v) 

- The conformable derivative also adheres to many 

classical calculus rules, such as the product rule and 

chain rule, which are often challenging to apply in other 

fractional derivatives[11]. 

Taylor Series in Conformable Calculus   

Taylor’s series can be extended to conformable calculus, 

where an infinitely differentiable function Φ can be 

expressed as: Φ(v) = ∑
𝑣𝑝−𝑝Ψ(𝑣−𝑎)𝑝Φ𝑝 

𝑝!

∞
𝑝=0 (u). This series 

allows for the approximation of functions in a manner 

consistent with their fractional-order dynamics. 

Example   

For the exponential function in conformable calculus, 

the Maclaurin series expansion is given by: 

𝑒𝑣Ψ Ψ = ∑
𝑣(2′+1)Ψ

′!Ψ2′+1
∞
′=0  

This series illustrates how conformable derivatives can 

be used to approximate functions in fractional-order 

systems, providing a powerful tool for modeling 

dynamic phenomena. 

 

III. FUZZY CONFORMABLE 

DERIVATIVE OF ORDER Ψ 
 

The concept of the fuzzy conformable 

derivative integrates the ideas of fuzzy calculus and 

conformable calculus to address the complexities 

associated with modeling uncertain and fractional-order 

dynamics[12]. This section introduces the fuzzy 

conformable derivative of order Ψ, establishing its 

definition, properties, and significance in the context of 

fuzzy-valued functions. 

3.1 Definition of Fuzzy Conformable Derivative of 

Order Ψ 

The fuzzy conformable derivative of order Ψ 

generalizes the concept of differentiation to fuzzy-valued 

functions, incorporating the flexibility of conformable 

calculus while accommodating the inherent vagueness in 

fuzzy systems. 

Definition 3.1: Fuzzy Conformable H-

Differentiability 

A fuzzy-valued function Φ is said to be 

conformable H-differentiable of order Ψ at a point v ∈ (a 

, b) if, for any 𝜃> 0 , the H-differences Φ (v + 𝜃 𝑣1−Ψ) - 

Φ (v)  and Φ (v) - Φ (v - 𝜃 𝑣1−Ψ) exist, and the 

following condition is satisfied:lim
𝜃→0

Φ (v + 𝜃 𝑣1−Ψ) − Φ (v)

𝜃
 = 

lim
𝜃→0

Φ (v) − Φ (v − 𝜃 𝑣1−Ψ) 

𝜃
. This definition extends the 

classical notion of differentiability to fuzzy-valued 

functions, allowing for the analysis of such functions in 

systems where uncertainty is represented by fuzzy 

numbers. 

3.2 Properties of Fuzzy Conformable Derivative 

The fuzzy conformable derivative of order Ψ 

retains several key properties of both fuzzy calculus and 

conformable calculus, making it a powerful tool for 

modeling and analyzing fuzzy systems. 

Relationship with Classical Derivatives 

One of the important properties of the fuzzy 

conformable derivative is its consistency with classical 

derivatives when Ψ = 1. Specifically, for Ψ = 1, the 

fuzzy conformable derivative reduces to the classical 

fuzzy derivative, ensuring that the new definition acts as 

a natural extension rather than a replacement of existing 

concepts. 

Property 3.2: Consistency with Classical Derivatives 

ΦΨ(v) = 𝑣1−Ψ Φ’(v) This property highlights the close 

relationship between the conformable derivative and the 

classical derivative, demonstrating that the former can be 

viewed as a fractional-order generalization of the latter. 

Taylor Series Expansion 

The fuzzy conformable derivative can be used to extend 

the Taylor series expansion to fuzzy-valued functions, 
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 providing a method for approximating these functions in 

fractional-order systems. 

Theorem 3.3: Taylor Series for Fuzzy-Valued 

Functions 

The Taylor series for an infinitely differentiable fuzzy-

valued function Φ with respect to the conformable 

derivative at a point Φ(v) is given by: Φ(v) = 

∑
𝑣𝑝−𝑝Ψ(𝑣−𝑎)𝑝Φ𝑝 

𝑝!

∞
𝑝=0 (u). This expansion allows for the 

representation of fuzzy-valued functions in a series form, 

facilitating their use in mathematical modeling and 

analysis. 

3.3 Examples of Fuzzy Conformable Derivatives 

To illustrate the application of the fuzzy 

conformable derivative, consider the following example. 

Example 3.4: Fuzzy Conformable Derivative of a Simple 

Function 

Let Φ (v) = η ×𝜑(v), where  η is a fuzzy 

number, and  𝜑 (v) is a real-valued function that is Ψ-

differentiable. The fuzzy conformable derivative of Φ 

(v) is given by: ΦΨ (v) = η ×𝜑Ψ(v) This example 

demonstrates how the fuzzy conformable derivative can 

be applied to a product of a fuzzy number and a real-

valued function, extending the differentiation process to 

fuzzy systems. 

3.4 Limitations and Generalizations 

While the fuzzy conformable derivative 

provides a versatile tool for analyzing fuzzy systems, it 

also has certain limitations. For example, the derivative 

may not always produce bounded solutions, and certain 

classical properties, such as the index law or 

commutative law, may not hold in the fuzzy 

conformable context. 

Remark 3.5: Limitations of Fuzzy Conformable 

Derivatives 

- Bounded Solutions: The fuzzy conformable derivative 

may yield solutions that are unbounded, particularly in 

cases where the underlying fuzzy-valued function has 

specific characteristics that defy conventional bounds. 

- Failure of Classical Laws: The fuzzy conformable 

derivative does not necessarily obey the index law or the 

commutative law, highlighting the need for careful 

consideration when applying these derivatives in 

mathematical models. 

To address these limitations, the concept of 

strongly generalized Ψ-differentiability is introduced. 

This generalization provides a broader framework for 

differentiating fuzzy-valued functions[13], allowing for 

the application of fuzzy conformable derivatives in cases 

where the standard approach may not suffice. 

Definition 3.6: Strongly Generalized Ψ-

Differentiability 

A fuzzy-valued function Φ is strongly 

generalized Ψ-differentiable if it satisfies a set of 

conditions that extend beyond the standard definition of 

the fuzzy conformable derivative. These conditions 

allow for the differentiation of functions that do not meet 

the criteria for H-differentiability, thereby expanding the 

applicability of fuzzy conformable calculus. 

 

IV. FUZZY CONFORMABLE 

DERIVATIVE OF ORDER 2Ψ 
 

Building upon the concept of the fuzzy 

conformable derivative of order Ψ, this section extends 

the framework to the second-order derivative, denoted as 

2Ψ[14]. This extension allows for more complex 

modeling of fuzzy-valued functions, particularly in 

systems where the dynamics are governed by higher-

order processes. 

4.1 Definition of Fuzzy Conformable Derivative of 

Order 2Ψ 

The fuzzy conformable derivative of order 2Ψ 

generalizes the concept of differentiation to capture the 

second-order dynamics of fuzzy-valued functions within 

the context of conformable calculus. 

Definition 4.1: Strongly Generalized Conformable 

Derivative of Order 2Ψ 

A fuzzy-valued function Φ is said to be strongly 

generalized differentiable of order 2Ψ if there exists a 

fuzzy number Φ 2Ψ(v) such that the following 

conditions hold: 

1. For any 𝜃> 0 , the H-differences ΦΨ (v +  𝜃 𝑣1−Ψ) −
 ΦΨ (v) and ΦΨ (v) −  ΦΨ (v −  𝜃 𝑣1−Ψ) exist, and the 

limit is equal to Φ2Ψ (v). 

lim
𝜃→0

ΦΨ (v + 𝜃 𝑣1−Ψ)− ΦΨ (v)

𝜃
 = lim

𝜃→0

ΦΨ (v)− ΦΨ (v− 𝜃 𝑣1−Ψ) 

𝜃
  

2. If Φ (v) and ΦΨ(𝑣)are both differentiable of the same 

type, then the second-order derivative can be written as: 

lim
𝜃→0

Φ (v +2 𝜃 𝑣1−Ψ)+ Φ (v)−2Φ (v + 𝜃 𝑣1−Ψ)

−𝜃2  = Φ2Ψ(v) 

3. If Φ (v)  is differentiable of one type and ΦΨ(𝑣) is 

differentiable of another, then the second-order 

derivative can be expressed as: 

 

lim
𝜃→0

2Φ (v + 𝜃 𝑣1−Ψ)− Φ (v)−Φ (v + 2𝜃 𝑣1−Ψ)

−𝜃2  = Φ2Ψ(v) 

This definition expands the conformable derivative to 

account for second-order effects, which are crucial in 

modeling more complex fuzzy systems. 

4.2 Properties of the Fuzzy Conformable Derivative of 

Order 2Ψ 

The fuzzy conformable derivative of order 2Ψ 

retains several key properties that are analogous to those 

of the first-order derivative but extends them to 

accommodate second-order dynamics. 

Property 4.2: Relation Between First-Order and 

Second-Order Derivatives 

For a fuzzy-valued function Φ that is strongly 

generalized conformable differentiable of order Ψ, the 

second-order derivative can be related to the first-order 

derivative as follows: 

1. If  ΦΨ (𝑣)is differentiable of type (Ψ-1), then: 

      Φ1
2Ψ (v) =𝑣2(1−Ψ) Φ1

2 (v) 
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    Where Φ1
2 (v) denotes the second classical derivative 

of Φ with respect to  v. 

2. If ΦΨ (𝑣) is differentiable of type (Ψ-2), then: 

   Φ2
2Ψ (v) =𝑣2(1−Ψ) Φ2

2 (v) 

where Φ2
2 (v) is the second classical derivative 

of Φ with respect to  v, but in the type (Ψ-2) context. 

These relations provide a bridge between first-

order and second-order fuzzy conformable derivatives, 

allowing for the systematic extension of differentiation 

to higher orders. 

Taylor Series Expansion for Second-Order 

Derivatives 

The second-order fuzzy conformable derivative 

can be used to extend the Taylor series expansion to 

account for second-order effects[15]. For an infinitely 

differentiable fuzzy-valued function Φ (v) , the Taylor 

series can be expressed as:  

Φ(v) = ∑
𝑣𝑝−𝑝Ψ(𝑣 − 𝑢)𝑝Φ𝑝2Ψ 

𝑝!
(𝑢)

∞

𝑝=0
 

 

This expansion facilitates the approximation of 

fuzzy-valued functions in systems where second-order 

dynamics are significant. 

4.3 Examples and Applications 

To demonstrate the application of the fuzzy 

conformable derivative of order 2Ψ, consider the 

following example. 

Example 4.3: Second-Order Derivative of a Fuzzy-

Valued Function 

Let Φ (v) = η ×ψ(v), where η is a fuzzy number, 

and ψ(v) is a real-valued function that is differentiable of 

order 2Ψ. The second-order fuzzy conformable 

derivative of Φ (v) is given by:Φ2Ψ (v) = η × ψ2Ψ
(v) 

This example illustrates how the second-order 

fuzzy conformable derivative can be applied to a product 

of a fuzzy number and a real-valued function, extending 

the analysis to second-order effects. 

4.4 Limitations and Extensions 

While the fuzzy conformable derivative of 

order 2Ψ provides a powerful tool for modeling second-

order dynamics in fuzzy systems, it is important to 

acknowledge its limitations. Similar to the first-order 

derivative, the second-order derivative may not always 

produce bounded solutions, and certain classical 

properties may not hold in this context. 

Remark 4.4: Limitations and Extensions of the 

Second-Order Fuzzy Conformable Derivative 

- Bounded Solutions: The second-order fuzzy 

conformable derivative may yield unbounded solutions 

in certain cases, particularly when the underlying fuzzy-

valued function exhibits extreme behaviors. 

- Failure of Classical Laws: As with the first-order 

derivative, the second-order fuzzy conformable 

derivative does not necessarily obey the classical index 

law or commutative law. This necessitates a careful 

approach when applying these derivatives in 

mathematical models. 

To address these limitations, the concept of 

higher-order strongly generalized Ψ-differentiability can 

be introduced. This generalization extends the strongly 

generalized differentiability framework to higher orders, 

allowing for the differentiation of fuzzy-valued functions 

that may not meet the criteria for standard second-order 

differentiation. 

Definition 4.5: Higher-Order Strongly Generalized 

Ψ-Differentiability 

A fuzzy-valued function Φ is said to be higher-

order strongly generalized Ψ-differentiable if it satisfies 

a set of conditions that extend beyond the standard 

definition of second-order differentiation. These 

conditions allow for the differentiation of functions that 

do not meet the standard criteria, thereby expanding the 

applicability of fuzzy conformable calculus to more 

complex systems. 

 

V. FUZZY CONFORMABLE 

DERIVATIVE OF ORDER PΨ 
 

The concept of fuzzy conformable derivatives 

can be generalized to arbitrary orders, denoted as pΨ, 

where  p  is a positive integer. This extension enables the 

modeling of higher-order dynamics in fuzzy-valued 

functions, making the framework versatile for a wide 

range of applications in systems characterized by 

complex and uncertain behaviors. 

5.1 Definition of Fuzzy Conformable Derivative of 

Order pΨ 

The fuzzy conformable derivative of order pΨ 

extends the ideas of first-order and second-order 

derivatives to any positive integer order, providing a 

comprehensive approach for analyzing higher-order 

effects in fuzzy systems. 

Definition 5.1: Strongly Generalized Conformable 

Derivative of Order pΨ   

A fuzzy-valued function Φ is said to be strongly 

generalized differentiable of order pΨ at a point v0 

∈(a,b) if there exists a fuzzy number ΦpΨ (v0) such that: 

1. For any 𝜃> 0, the H-differences Φ(𝑝−1)Ψ ( 𝑣0 +

 𝜃𝑣1−Ψ) −  Φ(𝑝−1)Ψ(𝑣0) and Φ(𝑝−1)Ψ(𝑣0) −
Φ(𝑝−1)Ψ ( 𝑣0 +  𝜃𝑣1−Ψ)exist, and the limit 

lim
𝜃→0

Φ(𝑝−1)Ψ ( 𝑣0+ 𝜃𝑣1−Ψ)− Φ(𝑝−1)Ψ(𝑣0)

𝜃
 = 

lim
𝜃→0

 Φ(𝑝−1)Ψ(𝑣0)−Φ(𝑝−1)Ψ ( 𝑣0+ 𝜃𝑣1−Ψ)

𝜃
 

   is equal to Φ𝑝Ψ(𝑣0). 

2. If Φ(p−1)Ψ (v0)is differentiable, the pΨ-order 

derivative can be expressed as: 

lim
𝜃→0

∑ (−1)𝑘 Φ(𝑣0+(p+k)θ 𝑣1−Ψ)𝑘
𝑝𝑝

𝑘=0

𝜃𝑝               = Φ𝑝Ψ(𝑣0) 

 

This definition generalizes the fuzzy conformable 

derivative to any integer order, allowing for the analysis 

of higher-order behaviors in systems where the 

complexity of dynamics requires such an extension. 
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 5.2 Properties of the Fuzzy Conformable Derivative of 

Order pΨ 

The fuzzy conformable derivative of order pΨ 

retains key properties from lower-order derivatives while 

extending them to accommodate the dynamics of higher-

order systems. 

Property 5.2: Recursive Nature of Higher-Order 

Derivatives   

The fuzzy conformable derivative of order pΨ 

can be understood as a recursive application of the first-

order derivative. Specifically, the pΨ-order derivative 

can be computed iteratively using the (p-1)Ψ-order 

derivative: Φ𝑝Ψ  (v) = v𝑝(1−Ψ)Φ𝑝 (v) 

where Φ𝑝 (v) denotes the p-th classical 

derivative of Φ with respect to v. 

This recursive nature allows for a systematic 

extension of differentiation to higher orders, facilitating 

the modeling of complex, multi-order dynamics in fuzzy 

systems. 

Taylor Series Expansion for Higher-Order 

Derivatives   

The Taylor series can be further extended to 

incorporate higher-order fuzzy conformable derivatives. 

For an infinitely differentiable fuzzy-valued function 

Φ(v), the Taylor series expansion considering derivatives 

up to order pΨ is given by: 

 

Φ(v) = ∑
𝑣𝑝−𝑝Ψ(𝑣 − 𝑢)𝑝Φ𝑝Ψ 

𝑝!
(𝑢)

∞

𝑝=0
 

 

This expansion is particularly useful in 

approximating fuzzy-valued functions when analyzing 

systems where higher-order effects are significant. 

5.3 Examples and Applications 

To demonstrate the utility of the fuzzy 

conformable derivative of order pΨ, consider the 

following example. 

Example 5.3: Higher-Order Derivative of a Fuzzy-

Valued Function   

Let Φ (v) = η ×ψ(v), where η is a fuzzy number, 

and ψ(v) is a real-valued function that is differentiable of 

order pΨ. The fuzzy conformable derivative of order pΨ 

for Φ (v) is given by: 

Φ𝑝Ψ (v) = η × ψpΨ
(v) 

This example shows how the fuzzy 

conformable derivative of order pΨ can be applied to a 

product of a fuzzy number and a real-valued function, 

enabling the analysis of higher-order dynamics. 

5.4 Limitations and Extensions 

The fuzzy conformable derivative of order pΨ, 

like its lower-order counterparts, has certain limitations 

that must be considered. The complexity of higher-order 

derivatives can lead to challenges in computation and 

interpretation, particularly in systems with intricate 

dynamics. 

 

 

Remark 5.4: Limitations and Challenges of Higher-

Order Fuzzy Conformable Derivatives   

- Complexity: As the order of differentiation increases, 

the complexity of the derivative also increases, which 

can make the resulting expressions difficult to interpret 

and apply in practice. 

- Computational Challenges: Calculating higher-order 

fuzzy conformable derivatives may involve complex 

recursive processes, leading to significant computational 

overhead, especially in systems with high-dimensional 

fuzzy variables. 

- Failure of Classical Properties: Similar to the first- 

and second-order derivatives, the fuzzy conformable 

derivative of order pΨ may not adhere to classical 

properties like the index law, commutative law, or 

associativity, necessitating careful analysis in 

applications. 

Extensions   

To mitigate these challenges, further 

generalizations and computational techniques can be 

developed to enhance the applicability of higher-order 

fuzzy conformable derivatives. These might include: 

- Approximation Methods: Techniques for 

approximating higher-order derivatives to simplify 

computations. 

- Hybrid Models: Combining fuzzy conformable 

calculus with other mathematical frameworks, such as 

neural networks or machine learning algorithms, to 

handle the complexity of higher-order dynamics. 

Definition 5.5: Higher-Order Strongly Generalized 

Ψ-Differentiability   

A fuzzy-valued function Φ is higher-order 

strongly generalized Ψ-differentiable if it satisfies 

conditions that allow for the differentiation beyond the 

standard pΨ-order framework. These conditions extend 

the applicability of fuzzy conformable calculus to more 

complex systems, where standard differentiation 

methods may fall short. 

 

VI. CONCLUSION 
 

This paper has introduced and developed the 

concept of fuzzy conformable derivatives, expanding the 

existing framework of fuzzy calculus and conformable 

calculus to accommodate the complexities of systems 

characterized by both uncertainty and fractional-order 

dynamics. By defining the fuzzy conformable derivative 

of order Ψ, 2Ψ, and extending it further to any arbitrary 

order pΨ, we have provided a comprehensive 

mathematical tool that can effectively model and analyze 

real-world phenomena where traditional calculus 

methods fall short. The fuzzy conformable derivative of 

order Ψ integrates the handling of vagueness inherent in 

fuzzy systems with the flexibility of fractional-order 

derivatives, offering a new approach to solving fuzzy 

differential equations. Extending this concept to higher 

orders, such as 2Ψ and pΨ, allows for the modeling of 

more complex systems that exhibit multi-order 
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 dynamics, which are common in areas like control 

systems, economics, engineering, and other fields 

dealing with imprecise data and long-memory processes. 

Key contributions of this work include: 

- The formal definition of fuzzy conformable derivatives 

for various orders, providing a unified approach to 

differentiate fuzzy-valued functions. 

- The exploration of properties and the development of 

operational rules that extend classical calculus to fuzzy 

systems, facilitating the application of these derivatives 

in practical scenarios. 

- Demonstrations of how these derivatives can be used to 

approximate functions through Taylor series expansions, 

and their application in solving fuzzy differential 

equations. 

However, the study also highlights certain 

limitations, such as the potential unboundedness of 

solutions and the non-adherence to some classical 

mathematical laws, especially in higher-order 

derivatives. These challenges suggest avenues for future 

research, including the development of approximation 

methods and hybrid models that combine fuzzy 

conformable calculus with other computational 

techniques to overcome these issues. The fuzzy 

conformable derivative presents a powerful extension to 

traditional calculus, enabling more accurate and flexible 

modeling of uncertain and complex systems. This 

framework opens up new possibilities for research and 

applications in various scientific and engineering 

domains, where traditional approaches may not be 

sufficient to capture the full complexity of the systems 

under study. Future work can focus on refining these 

methods, exploring their computational aspects, and 

applying them to a broader range of real-world 

problems. 
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