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ABSTRACT 

 
The Sine Cosine Algorithm (SCA) is one of the population-based metaheuristic optimization algorithms inspired by the 

oscillation and convergence properties of sine and cosine functions. The SCA smoothly transits from exploration to exploitation 

using adaptive range change in the sine and cosine functions. On the other hand, pressure vessel design is a complex engineering 

structural optimization problem, which aims to find the best possible design for a vessel that can withstand high pressure. This 

typically involves optimizing the material, shape, and thickness of the vessel to minimize welding, the material, and forming cost 

while ensuring it meets safety and performance requirements. This paper evaluates the performance of SCA for solving pressure 

vessel design problems. The result produced by SCA is compared with the results obtained by other well-known metaheuristic 

optimization algorithms, namely; ABC, ACO, BBO, CMA-ES, CS, DE, GA, GSA, GWO, HSA, PSO, SSO, TLBO and TSA. The 

experimental results demonstrated that SCA provides a competitive solution to other metaheuristic optimization algorithms with 

the advantage of having a simple structured search equation. Moreover, the performance of SCA is checked by different numbers 

of populations and the results indicated that the best possible population size should be 30 and 40. In addition to this, the SCA 

search agent success rate is checked for different numbers of populations and results show that the search agent success rate do 

not exceed 4.2%. 

 

Keywords- Metaheuristic Algorithm, Optimization, Pressure Vessel Design, Search Agent Success Rate, Sine Cosine 

Algorithm. 

 

 

 

I. INTRODUCTION 
 

Optimization refers to the process of finding the 

best possible solution to a problem or achieving the 

highest level of performance within given constraints. It 

involves maximizing or minimizing an objective function 

by adjusting variables or parameters. Optimization is 

paramount in many applications, including engineering, 

economics, computer science, business activities and 

industrial designs. Pressure vessels are complex 

engineering structures, subject to many uncertainties 

which are considered to be a challenging task for 

optimization algorithms. The aim of the pressure vessel 

engineering design problem involves finding the best 

possible design for a vessel that can lead to optimizing the 

material, shape, and thickness of the vessel to minimize 

welding, the material, and forming cost while ensuring it 

meets safety and performance requirements. Since many 

mechanical engineering optimization problem are non-

linear, non-continuous, and non-differentiable with many 

constraints therefore, the classical optimization 

algorithms will not able to solve such kind of problem, so 

there is a serious need to employ metaheuristic 

optimization algorithms [1]. Nature-

inspired/Metaheuristic optimization algorithms have 

gained significant attention in solving complex 

optimization problems across various domains. These 

algorithms are a class of computational methods that 
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mimic the behavior of natural systems to solve complex 

optimization problems. Nature-inspired/Metaheuristic 

optimization algorithms draw inspiration from the 

principles and processes observed in various natural 

phenomena, such as evolution, swarm intelligence, and 

the behavior of organisms. These algorithms are designed 

to explore and exploit search spaces efficiently by 

iteratively improving candidate solutions. They often 

involve population-based approaches, where a set of 

potential solutions (population) evolves over generations 

through iterative processes of selection, reproduction, and 

mutation [2].  Metaheuristic optimization algorithms can 

be classified into five classes as follows: 

1. Evolutionary techniques take inspiration from 

biology. In evolutionary algorithms, there is an initial 

random population that evolves over generations to 

produce new solutions by means of crossover and 

mutation and eliminate the worst solutions in order to 

improve the fitness value. The most popular algorithms 

are Evolutionary Strategy (ES) [3], Genetic Algorithm 

(GA) [4], Differential Evolution (DE) [5], Biogeography-

Based Optimization (BBO) [6], Genetic Programming 

(GP) [7], and Covariance Matrix Adaption Evolutionary 

Strategy (CMA-ES) [8].  

2. The swarm intelligence technique takes inspiration 

from the behavior of social insects or animals. In swarm 

intelligence, every individual has its own intelligence and 

behavior, but the integration of the individuals gives more 

power to solve complex problems. The most popular 

algorithms are Particle Swarm Optimization (PSO) [9], 

Ant Colony Optimization Algorithm (ACO) [10], 

Artificial Bee Colony Algorithm (ABC) [11,12], Spider 

Monkey Optimization algorithm (SMO) [13], Grey Wolf 

Optimizer (GWO) [14], Firefly Algorithm (FA) [15], 

Cuckoo Search (CS) algorithm [16,17] and Cuckoo 

Optimization Algorithm (COA) [18]. 

3. Physics-based techniques that take inspiration from 

the rules governing a physical phenomenon. The most 

popular algorithms are Gravitational Search Algorithm 

(GSA) [19], Harmony Search Algorithm (HSA) [20], 

Simulated Annealing (SA) [21], Big-Bang Big-Crunch 

(BBBC) [22], Charged System Search (CSS) [23], and 

Central Force Optimization (CFO) [24]. 

4. Human techniques are inspired from human 

activities. Every individual does physical activities (body 

activities) that affect his performance and nonphysical 

activities like thinking and behavior (mind activities). The 

most popular algorithms are the Teaching-Learning 

Based Optimization algorithm (TLBO) [25], Harmony 

Search (HS) [26], Group Search Optimizer (GSO) [27], 

and Tabu (Taboo) Search (TS) [28]. 

5. Mathematics techniques are adopting geometric, 

trigonometric, analytic functions and other mathematical 

expressions in their search equations in order to direct the 

solutions towards the promising area of search space. The 

most popular algorithms are Sine-Cosine Optimization 

algorithm (SCA) [29], Spherical Search Optimizer (SSO) 

[30], The Arithmetic Optimization Algorithm (AOA) 

[31], Stochastic Fractal Search (SFS) [32], and Tangent 

Search Algorithm (TSA) [33].  

 

 
Figure 1. Classification of meta-heuristic 

optimization algorithms. 

          

This paper aims to evaluate the performance and 

suitability of the Sine Cosine Algorithm in solving 

pressure vessel engineering design problems. The Sine 

Cosine Algorithm (SCA) is a metaheuristic optimization 

algorithm based on the trigonometric functions sine and 

cosine. It was proposed by Mirjalili, as a population-based 

algorithm for solving engineering optimization problems 

[29]. The algorithm is inspired by the oscillation and 

convergence properties of sine and cosine functions, and 

it has been shown to be effective in solving a wide range 

of optimization problems. This algorithm attracted 

researchers' attention and has received 3914 citations 

since it was published in 2016. Fig 2 shows the citation of 

SCA received for each year. This work evaluates the 

performance of SCA in three areas; solution quality, 

convergence ability and the search agent success rate. The 

Search agent success rate shows how many times a search 

agent gets updated successfully over the course of 

iterations. If the maximum number of iteration is 𝑇 and a 

search agent, 𝑋𝑖, get updated successfully 𝑇𝑖𝑠  times out of 

the course of iterations, the ratio 
𝑇𝑖𝑠

𝑇
× 100% is called 

search agent success rate. To evaluate the suitability of 

SCA, the performance of SCA is compared to other well-

known metaheuristics optimization algorithm. The 

detailed description is given in the experimental results in 

section 5. 

The rest of this paper is organized as follows: 

The second section describes the methodology. In the 

third section, a detailed introduction of the sine cosine 

optimization algorithm is provided. In the fourth section, 

a brief explanation of the pressure vessel engineering 

design problem, including the objective function and its 

constraints, is provided. In the fifth section, experimental 

results and solution analysis are presented and finally, the 

sixth section summarizes and concludes the work which 

has been done in this paper. 
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Figure 2. SCA citations over the years [38]. 

 

II. METHODOLOGY 
 

This paper aims to evaluate the performance of 

the Sine Cosine Algorithm (SCA) when solving pressure 

vessel design problems. This work is done in two steps: 

In the first step, the detailed description of the Sine Cosine 

Algorithm and the pressure vessel design problem are 

provided in section 3 and section 4. Then, in the second 

step, the SCA with certain parameters is employed to 

solve the problem and other experiments are conducted to 

evaluate the performance of SCA. In this study, the 

experiments conducted using MATLAB language, and 

the detailed background experiment is provided in Table 

1. In order to conduct the experiments, each algorithm 

runs 10 times independently to find the optimal solution, 

then the average of the best solution, the fitness values and 

search agent success rate out of ten runs stored in tables 

3, 4, and 5. Moreover, in order to visualize the 

performance of SCA, the results produced be SCA is 

compared with the results obtained by other well-known 

metaheuristic optimization algorithms, namely, Genetic 

Algorithm (GA), Differential Evolution (DE), Teaching 

Learning Based Optimization Algorithm (TLBO), Grey 

Wolf Optimizer (GWO), Jaya Algorithm (JA), Spherical 

Search Optimization Algorithm (SSO), Covariance 

Matrix Adaption Evolutionary Strategy (CMA-ES), 

Artificial Bee Colony Algorithm (ABC), Ant Colony 

Optimization (ACO), Tangent Search Algorithm (TSA), 

Particle Swarm Optimization (PSO), Biogeography 

Based Optimization Algorithm (BBO), Gravitational 

Search Algorithm (GSA), Harmony Search Algorithm 

(HSA)  and Cuckoo Search algorithm(CS). For ease of 

readability, the best solution obtained from the algorithms 

is highlighted in the boldface. At the end, the convergence 

curves of algorithms and search agents success rate are 

plotted. 

 

III. SINE COSINE ALGORITHM (SCA) 
 

The Sine Cosine Algorithm (SCA) is a 

metaheuristic optimization algorithm inspired by the sine 

and cosine functions behavior. It was proposed by 

Mirjalili [29], as an efficient and effective optimization 

technique for solving complex optimization problems. 

The algorithm is based on the concept of simulating the 

behavior of sine and cosine waves to explore the search 

space. It utilizes a population-based approach, where a set 

of candidate solutions, known as search agents, are 

iteratively updated to find the optimal solution. In SCA, 

each search agent represents a potential solution to the 

problem being solved. The algorithm starts by randomly 

initializing the positions of the search agent within the 

search space. The position of a search agent is represented 

by a vector of real numbers. During each iteration, the 

search agents’ position updates using a mathematical 

equation based on sine and cosine functions. In SCA, the 

position of search agent is updated using the following 

search equation: 

 

𝑋𝑖
𝑡+1 = {𝑋𝑖

𝑡 + 𝑟1 ×𝑠𝑖𝑛 𝑠𝑖𝑛 (𝑟2) × |𝑟3𝑃𝑖
𝑡 − 𝑋𝑖

𝑡|   𝑟4   <
0.5  𝑋𝑖

𝑡 + 𝑟1 ×𝑐𝑜𝑠 𝑐𝑜𝑠 (𝑟2) × |𝑟3𝑃𝑖
𝑡 − 𝑋𝑖

𝑡|     𝑟4 ≥ 0.5       
…(1) 

 

where 𝑋𝑖
𝑡 is the position of the current search 

agent in 𝑖𝑡ℎ dimension at 𝑡𝑡ℎ iteration, 𝑃𝑖
𝑡 is the position 

of the best solution (distention point) in 𝑖𝑡ℎ dimension at 

𝑡𝑡ℎ iteration, |∙ | indicates the absolute value and 𝑟𝑖 , 𝑖 =
1,2,3,4 are uniformly distributed random numbers [29]. 

The random numbers, 𝑟1, 𝑟2, 𝑟3 and 𝑟4 are the 

main parameters in SCA. The parameters 𝑟1 and 𝑟3 are 

uniformly distributed random numbers between 0 and 2, 

the parameter 𝑟2 is a uniformly distributed random 

number between 0 and 2𝜋, and 𝑟4 is a uniformly 

distributed random number between 0 and 1. When the 

parameter 𝑟1 is greater than 1, the algorithm conducts an 

exploration search, otherwise the algorithm conducts an 

exploitation search. The parameter 𝑟2 defines how far the 

movement should be towards or outwards the destination. 

The parameter 𝑟3 provides random weights for global best 

position (distention) in order to stochastically emphasize 

when 𝑟3 > 1 or deemphasize when 𝑟3 < 1 the effect of 

desalination in defining the distance. Finally, the 

parameter 𝑟4 equally switches between the sine and cosine 

components in Eqs.(1). The effect of Sine Cosine and 

random numbers are illustrated in Fig. 2.  Fig 2 shows that 

the search equation of SCA is capable of making the 

search agents move toward or outward to global best 

position (destination). Although a two dimensional model 

is provided in Fig. 3, it should be noted that it can be 

extended in higher dimension. In SCA, the search agents 

are doing exploration when the parameter 𝑟1 is greater 

than 1 and the search doing exploitation when it is less 

than 1. So the control parameter 𝑟1 plays a crucial role in 

the global exploration, which controls the transition of the 

algorithm from exploration mode to exploitation mode. 

The control parameter 𝑟1 adopts the linear decreasing 

method of Eqs. (2) to guide the algorithm transit from the 

exploration to the exploitation [29]. 
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Figure 3. Effects of Sine, Cosine and random 

numbers in Eq. (1) on the next position [29]. 

 

 
Figure 4.  Decreasing pattern for range of Sine and 

Cosine [29]. 

 

The pseudo code of SCA is given as follows: 

 

Algorithm: Pseudo code of SCA 

1. Introduce the variable bounds and required 

parameters. 

2. Generate the initial populations. 

3. Calculate the fitness 

While t <= T 

      Find the best solution 

       For i=1:Population size 

             Update the parameters 𝑟1, 𝑟2, 𝑟3  and 𝑟4 

              Update the position 𝑋𝑖 using (1) 

                 End if 

                 Check the bounds 

               Calculate the fitness value 

            Apply the greedy selection  

        End for  

 End while 

4. Report the best solution and fitness  

  

IV. PRESSURE VESEL DESIGN 

PROBLEM 
 

Pressure vessels are complex engineering 

structures, subject to many uncertainties which are used 

to store and transport fluids or gases at high pressures. A 

well-designed pressure vessel ensures the safety of 

workers and the surrounding environment by preventing 

leaks, ruptures, or explosions is less prone to failure, 

which minimizes downtime and production losses in 

industrial processes, can improve operational efficiency 

by minimizing energy loss, reducing maintenance 

requirements, extending the lifespan of the equipment, 

can help reduce material and manufacturing costs while 

ensuring optimal performance and longevity of the 

pressure vessel. Fig 5 demonstrates the schematic view of 

pressure vessels. The pressure vessel design optimization 

problem involves finding the best possible design for a 

vessel that can withstand high pressure. This typically 

involves optimizing the material, shape, and thickness of 

the vessel to minimize weight and cost while ensuring it 

meets safety and performance requirements. Key factors 

to consider in this optimization problem include: 

● Material selection: Choosing the right material with 

high strength and corrosion resistance while minimizing 

weight and cost. 

● Shape optimization: Determining the optimal shape 

of the vessel to distribute stress evenly and minimize 

material usage. 

● Thickness optimization: Finding the optimal 

thickness of the vessel walls to ensure safety while 

minimizing weight and material cost. 

● Performance requirements: Ensuring that the 

optimized design meets all necessary performance 

criteria, such as maximum allowable stress, fatigue life, 

and pressure containment. 

● Cost considerations: Balancing the trade-off between 

material cost, manufacturing complexity, and weight to 

achieve an economically viable design. 

 

To solve this optimization problem, engineers 

typically use advanced computational tools such as finite 

element analysis (FEA) and optimization algorithms to 

iteratively evaluate different design configurations and 

identify the best solution based on predefined objectives 

and constraints. Additionally, considering real-world 

factors such as manufacturing limitations, inspection 

requirements, and regulatory standards is crucial in 

achieving a practical and safe pressure vessel design. 

 

 
Figure 5. The schematic view of presser vessel [37]. 

 

Figure 5 illustrate the schematic view of pressure 

engineering vessel design problem. The purpose of this 

problem is to minimize the welding, the material, and 

forming cost [34]. There are four decision variables in the 

problem, namely, thickness of the head, 𝑇ℎ, thickness of 

the shell, 𝑇𝑠, length of the cylindrical section without 
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considering the head, L and the inner radius, R and 

containing four constraints while complete mathematical 

description of this constrained problem is provided in 

[35]. The best obtained solutions of the problem by 

optimization algorithms are presented in Table 3 and 

Table 4 and the convergence graph of the objective 

function, 𝑓(�⃗�), is plotted in Fig. 6-8. The mathematical 

model of the problem is given as follows: 

 

Consider [𝑥1, 𝑥2, 𝑥3, 𝑥4] = [𝑇𝑠, 𝑇ℎ , 𝑅, 𝐿] 
𝑓(�⃗�) = 0.6224𝑥1𝑥3𝑥4 + 1.7781𝑥2𝑥3

2 + 3.1661𝑥1
2𝑥4

+ 19.84𝑥1
2𝑥3 

Subject to 

𝑔1(�⃗�) = −𝑥1 + 0.0193𝑥3  ≤ 0, 
𝑔2(�⃗�) = −𝑥2 + 0.00954𝑥3  ≤ 0, 

𝑔3(�⃗�) = −𝜋𝑥3
2𝑥4 −

4

3
𝜋𝑥3

3 + 1296000 ≤ 0, 

𝑔4(�⃗�) = 𝑥4 − 240 ≤ 0, 
Variable range 0 ≤ 𝑥1, 𝑥2  ≤ 99, 10 ≤ 𝑥3, 𝑥4 ≤ 200. 
 

V. EXPERIMENTAL RESULTS 
 

This section aims to validate the performance 

and suitability of the Sine Cosine Algorithm in solving 

pressure vessel design problems. This problem is a 

constrained engineering design which is considered to be 

a challenging task for optimization algorithms. To tackle 

the design constraints, a constraint handling method must 

be integrated into the optimization algorithms. There are 

several methods of constraint handling in the literature, 

but this work used the simplest constraint handling 

method called the death penalty to conduct the 

experiments [36]. The parameter settings and background 

details of the experiments are described in subsection 5.1 

and the results provided by SCA and other metaheuristic 

optimization algorithms are provided in subsection 5.2. 

a) Parameter Settings 

In experiments in this section, the maximum 

number of iterations is 500 and the population size is 

30.  It’s worth mentioning here that the population size in 

CMA-ES is 𝑁 =  (4+round (3×𝑙𝑛 𝑙𝑛 𝐷  ) ×5, which is 

equal to 50. Moreover, only the performance of SCA is 

checked for different numbers of populations. Where D is 

the dimension of the problem, which is 4. In order to 

conduct the experiments, each algorithm runs 10 times to 

find the optimal solution. In this study, the experiment 

was conducted using MATLAB language and a detailed 

background experiment is provided in Table 1. Other 

specific control parameters of the algorithms are 

presented in Table 2. 

 

Table 1.  Experimental background details. 

Name    Settings 

 

System 

Manufacturer  

Acer 

Processor AMD A4-7210 (2.2GHz) APU 

with AMD Radeon R3 

Graphics, 1800 Mhz, 4 

Core(s), 4 Logical Processors 

(s) 

HDD 1000GB 

RAM 4GB 

Operation System  Windows 10, x64-Based PC 

Language  MATLAB R2014a 

 

Table 2.  The parameter settings of algorithms. 

Algo    Parameter Settings 

ABC  
Limit = (population size × problem 

dimension)/2. 

ACO 
Sample size =40, Intensification Factor =0.5 

and Deviation-Distance Ratio =1. 

BBO 

Emigration Rates are the same as original 

form of the algorithm, Habitat Keep Rate 

=0.4, Habitat Keep Size = round (Habitat 

Keep Rate× Population size), alpha =0.9 

and mutation rate is 0.15. step size is 

[0.0099randn.*(Upper-Lower) bound] in 

mutation.  

CMA

-ES 

Lambda= (4+round (3×log(problem 

dimension))) ×5, mu =lambda/2, and 

alpha_mu =2. 

CS 
Discovery rate of alien eggs =0.25, beta 

=3/2, and the rest are as original form of CS 

DE 
Crossover rate =0.9 and Scaling coefficient 

factoris 0.5. 

GA 
Uniform Crossover, Mutation rate =0.4, pc 

=beta =1 and sigma =1.6 

GSA 
ElitistCheck=1, Rpower=1, alpha=20, 

G0=100 and Final Percentage =2. 

GWO 
𝑎 =2, Coefficient Vector 𝐴 =2×a×

𝑟𝑎𝑛𝑑(0,1) − 𝑎 and 𝐴 =2× 𝑟𝑎𝑛𝑑(0,1) 

HSA 
HMCR =0.8, PAR =0.9, BW=1 and 

BWF=0.99 

PSO 

Inertia weight =1, Dumping ratio of the 

inertia =0.99 and Acceleration Coefficients 

=2. 

SCA 
𝑎 =2, 𝑟2 =2𝜋 × 𝑟𝑎𝑛𝑑(0,1), 𝑟3 =2×
𝑟𝑎𝑛𝑑(0,1) and 𝑟4 =𝑟𝑎𝑛𝑑(0,1) 

SSO 
Tournament selection and x = 0.5+0.03 * 

randn  

TLB

O 
Tf =round(1+rand(0,1)) 

TSA 
Pswitch=0.3, Pesc=0.8 and the rests are the 

same as the original form of TSA 

 

b) Results and Discussions  

This section describes the experimental results 

obtained by SCA and other algorithms. To see the 

suitability of SCA, the solution produced by SCA is 

compared with the results obtained by the original form 

of well-known metaheuristic optimization algorithms, 
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namely; ABC, ACO, BBO, CMA-ES, CS, DE, GA, GSA, 

GWO, HSA, PSO, SSO, TLBO and TSA. Table 4 

summarizes the comparison results between SCA and 

other algorithms. Table 3 shows that DE achieved the best 

solution among all algorithms, and SCA obtained the 

fourth-best solution after GWO, CS and SSO. Although 

SCA did not achieve the best results among all 

algorithms, still provides a competitive solution to other 

metaheuristic optimization algorithms with the advantage 

of having a simple structured search equation. Fig 8 and 

Fig 10 compares the convergence curve of SCA and other 

algorithms, which shows that SCA is smoothly 

convergent to the near optimum solution. At the 

beginning, SCA starts exploration and gradually transfers 

to exploitation, as we can see its convergence curve in the 

boxplot in Fig 9. Fig 5 compares the convergence curve 

of SCA for best, mean and worst fitness values. Initially, 

there is a big difference between the best, mean and worst 

fitness, but gradually they become close to each other and 

finally, almost they converge to the near optimum, which 

implies the convergence ability of SCA in solving such 

kind of problems.  

 

Table 3. The optimum table of pressure vessel design 

problem. 

Algo 
Decision Variables 

𝑓(�⃗�) 
𝑇𝑠 𝑇ℎ 𝑅 𝐿 

ABC  
53.41

4 

43.32

3 
59.826 

118.52

6 

6742.0

4 

ACO 
17.53

2 
8.931 56.602 

60.888

7 

6814.8

9 

BBO 
17.34

0 
8.917 56.048 63.042 

6840.8

9 

CMAE

S 

15.08

0 
8.370 47.118 

136.58

8 

6932.2

0 

CS 
12.96

1 
7.190 42.392 

173.51

9 

6070.1

4 

DE 
13.02

4 
6.968 42.098 

176.63

6 

6059.7

1 

GA 
16.19

6 
8.072 52.351 

86.102

8 

6531.3

5 

GSA 
16.14

8 

12.13

9 
50.149 

98.296

8 

7671.2

7 

GWO 
13.07

6 
6.937 

42.414

3 

173.14

7 

6064.9

9 

HAS 
19.31

2 
9.356 56.705 58.280 

7452.6

6 

JA 
14.20

4 
7.432 45.235 

150.89

4 

6310.2

7 

PSO 
16.92

3 
8.360 53.538 86.768 

6735.2

0 

SCA 
13.87

2 
7.415 44.246 

156.28

0 

6240.9

6 

SSO 
13.77

2 
7.177 44.007 

156.23

0 

6159.7

1 

TLBO 
14.73

6 
7.704 47.269 

136.56

1 

6321.7

9 

TSA 
17.97

0 
9.015 57.438 

62.212

4 

6987.9

1 

 

Table 4 summarizes the solutions obtained by 

SCA by different numbers of populations (N), which are 

5, 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100. This 

experiment is launched to evaluate the performance of 

SCA for different numbers of populations and also to find 

the best possible population size for SCA to solve such 

kind of problem. It is well known that the population size, 

in an algorithm is a quantitative parameter. Therefore, if 

the number of populations are increased, it is obvious that 

the algorithms will provide a better solutions. However, 

we need to find the best possible population size for SCA 

in order to prevent time-consuming, extra-functional 

evolution and find the best solution. Hence, according to 

the Table 4, the best possible population size should be 

between 30 and 40 for SCA to solve such kind of 

problems. Fig 6 compares the convergence graph of SCA 

with different numbers of populations, 5, 10, 20, 30, 40, 

50, 60, 70, 80, 90 and 100. 

 

Table 4. The optimum table of the problem obtained 

by SCA for different number of population. 

Pop 
Decision Variables 

𝑓(�⃗�) 
𝑇𝑠 𝑇ℎ 𝑅 𝐿 

𝑁 = 5 15.593 8.3299 48.4690 125.672 6736.219 

𝑁 = 10 13.670 7.2278 43.3166 165.681 6260.783 

𝑁 = 20 13.657 7.1859 43.1133 166.461 6223.428 

𝑁 = 30 13.872 7.4158 44.2461 156.280 6240.962 

𝑁 = 40 13.421 6.9667 43.0076 167.35 6138.421 

𝑁 = 50 13.140 7.1701 42.297 175.930 6150.086 

𝑁 = 60 13.677 7.0951 43.6583 159.976 6146.684 

𝑁 = 70 13.270 6.9318 42.543 172.739 6148.738 

𝑁 = 80 13.235 7.0495 42.334 174.937 6129.074 

𝑁 = 90 13.153 7.0915 42.436 173.727 6117.679 

𝑁
= 100 

13.361 7.1144 42.761 170.001 6120.564 

          

Table 5 summarizes the search agent success rate 

of SCA, GWO, Jaya, SSO and DE for different number of 

populations. At each iteration in the algorithms, the 

search agents trying to get updated, but because of the 

greedy selection in many algorithms, they fail to update 

successfully. Therefore, there is a need to check how 

many times a search agent gets updated during the course 

of iteration, and that demonstrates how dynamic an 

algorithm is. In order to calculate the search agent success 

rate, we assigned a trial counter to each search agent. If 

the search agent gets updated successfully, the trial 

counter increases by one, otherwise it will remain the 

same. If the maximum number of iteration is 𝑇 and a 

search agent gets updated 𝑇𝑖𝑠  times out the course of 

iteration, the ratio 
𝑇𝑖𝑠

𝑇
× 100% is called search agent 
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success rate. In Fig 9 the horizontal line demonstrates the 

population size and the vertical line shows the success 

rates of algorithms including SCA. Table 5 shows that, 

the SCA search agent success rate does not exceed 4.2% , 

while the DE search agent success rate is almost 16% on 

average. Fig 9 compares the SCA, GWO, SSO, Jaya, and 

DE Search agent success rate for different population 

sizes. 

 

Table 5. Search agent success rate 

Pop 
Optimization Algorithms 

SCA GWO Jaya SSO DE 

𝑁 = 5 4.178 3.576 28.08 4.008 13.54 

𝑁 = 10 3.914 3.496 12.77 4.164 25.85 

𝑁 = 20 3.898 2.955 8.628 4.179 17.155 

𝑁 = 30 3.784 3.046 4.892 4.064 16.18 

𝑁 = 40 3.928 2.913 3.489 4.221 15.83 

𝑁 = 50 3.802 2.8372 3.584 4.1388 15.57 

𝑁 = 60 3.764 2.798 2.972 4.1503 15.43 

𝑁 = 70 3.806 2.644 1.894 4.36 15.46 

𝑁 = 80 3.762 2.715 2.001 4.069 15.21 

𝑁 = 90 3.802 2.613 2.057 4.191 15.30 

𝑁
= 100 

3.783

4 
2.6044 1.9772 4.1136 15.4038 

 

 
Figure 6. Convergence curve of SCA 

 

 
Figure 7. Convergence curve of SCA for different 

number of populations 

 

 
Figure 8. Convergence curve of algorithms 

 
Figure 9. SCA search agent success rate 

 

 
Figure 10. The boxplot of finesses provided by 

algorithms. 

 

VI. CONCLUSION 
 

This paper evaluated the performance of SCA in 

solving pressure vessel engineering design problem and 

the result produced by SCA is compared with the results 

obtained by other well-known metaheuristic optimization 

algorithms, namely; ABC, ACO, BBO, CMA-ES, CS, 

DE, GA, GSA, GWO, HSA, PSO, SSO, TLBO and TSA. 

The experimental results show that DE achieved the best 

solution among all algorithms, and SCA obtained the 

fourth-best solution after GWO, CS and SSO. Although 

SCA did not achieve the best results among all 

algorithms, still it provided a competitive solution to other 

metaheuristic optimization algorithms with the advantage 

of having a simple structured search equation. Moreover, 

the performance of SCA in solving the problem is 

checked by different numbers of populations and the 

experimental results recommends, the population size 

should be between 30 and 40. It is obvious if the 

population size increases, the algorithm will obtain a 

better solution, but it will impose extra function 

evaluation and time-work on the algorithm. Therefore, 



 

 

45   This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) 

 

ISSN: 2583-4053 

Volume-3 Issue-3 || June 2024 || PP. 38-46 
 

https://doi.org/10.55544/jrasb.3.3.8 

 

Journal for Research in Applied Sciences 

and Biotechnology 

www.jrasb.com 

SCA will have the best performance takes place for the 

population size between 30 and 40. In addition, the SCA 

search agent success rate is checked by different number 

of populations, which are 5, 10, 20, 30, 40, 50, 60, 70, 80, 

90 and 100, and the experimental results show that, the 

SCA search agent success rate does exceed 4.2%, and it 

indicates that SCA is not as dynamic as DE.  However, it 

has the ability to provide a competitive solution to other 

metaheuristic optimization algorithms. Overall, having a 

very simple search equation with controlled exploration 

and exploitation ability, makes the SCA look special.  
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