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ABSTRACT 

 
In this work, we obtained the time evolution of the wave function of a limited quantum system (1D Box), hence getting 

a mathematical model to describe the system. By using programming computes, it performs a time evolution that decomposes 

the initial state into the 2,10, and 20 lowest energy eigenstates. Finally, by comparing numerical de-composition coefficients for 

the wave function to the analytical values, it found the number of knots increases directly versus the energy of the particle's 

quantum state. As a result, the mean bending given by the second derivative which is proportional to the kinetic energy operator 

should increase. We found there is a negligible mean and standard deviation of the energy in units of the ground state energy. 
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I. INTRODUCTION 

 

In the usual quantum mechanics, for the general 

stationary-state problems, the wave function should 

vanish at infinity as a constraint imposed on it [1,2,3]. 

However, in some special systems, it is recommended to 

be desirable to presumption a bounded or enclosed 

system by requiring that the same vanishes on nodes or 

surfaces of a finite region of space [4]. The first was 

attempted in 1937 by confinement mode in a quantum 

system to simulate the effects of pressure on the energy 

of a hydrogen atom, depolarization, and ionization 

potential within an impenetrable spherical cavity [5]. 

Then, followed by [6]. The molecule or a multi-electron 

atom has different properties of a confined quantum 

system that are fundamentally different from their free or 

unbounded [7]. 

In the last ten years, models of spatially 

confined quantum particles by external potentials had 

great interest from various fields of physics and 

chemistry [8]. All practical applications which include 

atoms and molecules confined within cavities, charges in 

semiconductor wells and neutral, Excitons in quantum 

dots and Synthetic atoms, etc., are used as important 

models for the impurities or luminescence in solids, 

vibrational spectra of point defects, magnetic properties 

in semiconductor nanostructures [9,10], thermodynamic 

of nonideal gases, ionized plasmas, etc. [11]. It also 

holds promise for potential applications in nano and 

molecular-sized circuit devices including quantum 

computers [12]. 

The form was studied by many researchers 

employing a variety of techniques such as WKB and 

perturbation theory [13,14,15,16]. The effect of finite 

boundaries on energy levels was reported by [17], while 

the quantum confinement in 1D box systems was 

demonstrated by [18,19]. 

This work focuses on analytical and numerical 

solutions, using the exact known method. We are going 

to present an algorithm to solve the time-independent 
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equation efficiently of a particle in a box with different 

states, while that program will expand the initial wave 

function onto the basis formed from the eigenstates of 

the Hamiltonian to get the time evolution. 

In this work, we are going to calculate the 

evolution time and lowest eigenstates for the electron 

whose confinement in the well by Solving the box model 

which is used to describe a trapped particle in a 1D well. 

 

II. THEORY 
 

The simplest application of the Schrödinger 

equation is the particle in the box model system, but it 

leads to the clarification of many basic concepts in 

quantum mechanics, especially the movement of 

electrons within metals [20,21,22]. For a particle moving 

in one dimension in the direction of the x-axis, the 

equation of the Schrödinger equation is [23]: 

 

−(ℏ/2𝑚) 𝜓′′(𝑥) + 𝑉(𝑥)𝜓(𝑥) = 𝐸𝜓(𝑥)                … (1) 
 

This is a way of making sure that the electron is 

confined to the region of the central box which acts as a 

bound box. In this case, the potential (V = 0) is inside the 

box and the walls of the box cannot be penetrated [24]. 

We can place the origin of our x coordinate system 

anywhere we choose for convenience, see Scheme 1. 

Here we assume that the particle's motion is 

free between the two ends x=0 and x=L, which 

represents the limits of a box and cannot penetrate past 

either end. These limits are equivalent to potential 

energy which depends on the position x [25]. 

 

𝑉(𝑥) = {
0    0 ≤ 𝑥 ≤ 𝐿
∞    𝑥 < 0 and 𝑥 > 𝐿               … (2)

 

 

 
Scheme 1. The box barriers have a very high 

large potential, but the potential inside the box is zero 

[26]. 

In this case, the particle is bound inside the 

potential well between x=0 or x=L, and by the 

requirement of the wave function to be continuous, this 

means:  

 

𝜓(𝑥) = 0 for 𝑥 < 0 and 𝑥 > 𝐿                                   … (3) 
𝜓(0) = 0 and 𝜓(𝐿) = 0                                               … (4) 

 

Schrodinger equation reduces to the free 

particle form: 

 

−ħ2/2𝑚 𝜓′′(𝑥) = 𝐸 𝜓(𝑥)                                          … (5) 
 

Which have a solution as: 

 

𝜓′′(𝑥) + 𝑘2𝜓(𝑥) = 0                                                  … (6) 

𝑘2 =
2𝑚𝐸1

ħ2
                                                                     … (7) 

𝜓(𝑥) = 𝐴 sin 𝑘𝑥 + 𝐵 cos 𝑘𝑥                               … (8) 
𝜓(0) = 𝐴 sin 0 + 𝐵 cos 0 = 𝐵 = 0                            … (9) 
𝜓(𝑎) = 𝐴 sin 𝑘𝐿 = 0                                                   … (10) 

𝑘𝐿 = 𝑛 𝜋                                                       … (11) 
 

Where A and B are constant. From the above 

equations we can get: 

 

𝐸𝑛 =
ħ2𝜋2

2𝑚𝐿2
𝑛2 =

ℎ2

8𝑚𝐿2
𝑛2                                 … (12) 

 

Where: 𝑛 = 1,2, ,3…n called quantum number. 

When n=1 we can get the first energy level of the 

particle in the box. 

 

𝐸1 =
ℎ2

8𝑚𝐿2
                                                                      … (13)   

 

The eigenfunction of the particle in the box is 

given by: 

 

𝜓𝑛 (𝑥) = 𝐴 sin(𝑛𝜋𝑥/𝐿)                              … (14) 

∫  
𝑎

0

|𝜓𝑛(𝑥)|
2𝑑𝑥 = 1                                … (15) 

 

By normalized condition, we can get A 

constant: 

 

𝐴2∫  
𝐿

0

sin2 (𝑛𝜋𝑥/𝐿)𝑑𝑥 = 𝐴2(𝐿/𝜋𝑛)∫  
𝑛𝜋

0

sin2 𝜃 𝑑𝜃 

= 𝐴2(𝐿/2) = 1              … (16)

 

 

So that: 

 

 𝐴 = √
2

𝐿
                                                 … (17) 

 

So, we get normalized eigenfunctions for the 

particle inside the box which are dependent on the 

quantum number n and length of the box. 

 

𝜓𝑛(𝑥) = √𝐿/2 sin(𝑛𝜋𝑥/𝐿)                        … (18) 

 

By using this equation there are several 

solutions can be obtained for different values of n. 

        (x)=∞           V(x)=0                      V(x)=∞  

    

 

     Electron 

 

 

        0               L                 x 
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The time evolution of the wave function with 

the time-dependent Schrodinger equation is given as: 

 

Ψ(𝑥, 𝑡) = 𝜓(𝑥)𝑒−𝑖𝐸𝑡/ħ                        … (19) 
 

Wave function becomes: 

 

𝜓𝑛(𝑥) = √𝐿/2 sin(𝑛𝜋𝑥/𝐿) 𝑒
−𝑖𝐸𝑡/ħ               … (20) 

 

In this case, the phase part in equation (20) can 

be expanded into two parts real and imaginary part, so 

that the wave function becomes as: 

 

Ψ(𝑥, 𝑡) = (√𝐿/2 sin(𝑛𝜋𝑥/𝐿))(cos𝐸𝑛𝑡/ħ)⏟                    
real part 

 

− 𝑖(√𝐿/2 sin(𝑛𝜋𝑥/𝐿))(sin 𝐸𝑛𝑡/ħ)  ⏟                      
imaginary part 

                  … (21) 

 

Which can rewrite slightly to: 

 

Ψ(𝑥, 𝑡) = (√𝐿/2 sin(𝑛𝜋𝑥/𝐿))(cos𝐸𝑛𝑡/ħ)⏟                    
real part 

 

− 𝑖(√𝐿/2 sin(𝑛𝜋𝑥/𝐿)) (cos(𝐸𝑛𝑡/ħ) −
𝜋

2
) ⏟                          

imaginary part 

              … (22) 

 

The complex part of the equation (22) oscillates 

out of phase by 
𝜋

2
  , and represents the time evolution 

behavior of the lowest eigenstates [27]. 

 

III. RESULTS AND DISCUSSION 
 

One of the most important features of the 

quantum states (wave functions of lowest energy) of 

particles trapped in the box is the phenomenon of knots 

[28]. At these knots, the wave functions disappear. There 

is a completely zero probability of finding the particle. 

Three probability densities have been identified at which 

the particle can be located, at the 20 lowest energies It 

seems from general mathematics logic that the number 

of knots increases directly versus the energy of the 

particle's quantum state, which can be justified by a 

symmetry between the increase in the number of nodes 

and the number of vibrations in the wave function and its 

steepness. According to that symmetry, the mean 

bending given by the second derivative which is 

proportional to the kinetic energy should increase. So, 

proportionally the higher number of nodes, the power is 

higher. This conclusion is profound evidence that is 

invaluable in more complex quantum systems. 

Fig. 1. A comparison between the analytical 

and 5 numerical values of the wave function for the 

lowest energy of the eigenstates of a particle confined 

inside the box. The evolution of the states of the function 

is clear from the lowest energy to the highest energy. 

The yellow line represents the highest energy of the 

eigenstates considered part of the separated values of the 

lowest eigenstate's energy. It is clear that eigenstates 

reduce to respective unbounded values inside the 

potential enclosure but not near the walls. They become 

wave box eigenstates when the separation of points is 

large compared to the box size. 

 

 
Fig. 1.  Approximation of the Initial State wave 

function for N(2-20) Lowest Particle in Box Energy 

Eigenstates. 

 

 
Fig. 2. Numerical Time Evolution at two Lowest 

Particle in Box Energy Eigenstates, probability 

density in length unit = 0.2246. 

 

In fig. 2. The time evolution of the wave 

function inside the box at the lowest energy of the 

eigenstates 2 per unit length, at the value of the 

probability density 0.2246. Fig. 3 and 4 are generated in 

three dimensions by solving equation (22) of the ground 

state of the well on a 1D box basis. The time evolution 

wave function is then simply the superposition of the 

box basis states with appropriate time-dependent phase 

factors and using the probability density as a function of 

the time to show the wave function at the 10 and 20 

lowest energies. Probability density in length unit = 

0.8512 and 0.9629 respectively. 
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As shown in table 1. the probability density is 

fixed at the 2 lowest eigenstates energy, while the 

variation begins to occur at the higher 10 and 20 lowest 

eigenstates energy. 

 

Table 1. Probability Density Function at 2,10 and 20 

lowest energy eigenstates per length units. 

Probability Density Function 

2 lowest 

energies 

10 lowest 

energies 

20 lowest 

energies 

0.2246 0.8512 0.9629 

0.2246 0.4636 0.4815 

0.2246 0.7874 0.8906 

0.2246 0.4636 0.4815 

0.2246 0.8512 0.9629 

 

 
Fig. 3. Numerical Time Evolution at ten Lowest 

Particle in Box Energy Eigenstates, probability 

density in length unit = 0.8512. 

 

 
Fig. 4. Numerical Time Evolution at twenty Lowest 

Particle in Box Energy Eigenstates, probability 

density in length unit = 0.9629. 

IV. CONCLUSION 
 

A solution of the Schrodinger equation 

analytically and numerically methods have been 

employed to the problem of a particle confined in a 1D 

box and time evolution for the lowest eigenstates energy 

of the particle. the lowest eigenstates energy was chosen 

between 2 to 20 of the wave function and comparing the 

analytical with the numerical results using a computer 

program. 

The eigenstates reduce to respective unbounded 

values inside the box potential enclosure but not near the 

barriers. The eigenstates of the wave function are formed 

when the separation of nodes is large compared to the 

box size. also, a negligible standard deviation of energy 

values was obtained about (177.652305378225) in units 

of the ground state energy. 
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