https://doi.org/10.55544/jrasb.2.5.24

### Design, Synthesis and Investigation of Mefenamic Acid Containing Thiazolidine-4-one

Rawha'a Khalid M<sup>1</sup>, Ayad Suliman H<sup>2</sup> and Fahdel Dawood Kh<sup>3</sup>

<sup>1,3</sup>Department of Chemistry, College of Sciences, University of Tikrit, Tikrit, IRAQ. <sup>2</sup>Department of Chemistry, College of Pure Sciences, University of Tikrit, Tikrit, IRAQ.

<sup>1</sup>Corresponding Author: rawhaakhalid990@gmail.com



www.jrasb.com || Vol. 2 No. 5 (2023): October Issue

**Received:** 13-11-2023

Revised: 15-11-2023

Accepted: 16-11-2023

#### ABSTRACT

Mefenamic acid and chloroacetyl chloride were mixed together to make 2-(2-chloro-N-(2,3-dimethylphenyl) acetamido) benzoic acid. The last compound prepared reacted with hydrazine hydrate to get 2-(N-(2,3-dimethylphenyl)-2-hydrazineylacetamido) benzoic acid, Condensed substituted benzaldehydes were utilized to make Schiff bases; Through cyclization reactions with thioglycolic acid, these compounds were transformed into 2,3-disubstituted thiazolidine-4-one; and finally, all structures were described using FT-IR, 1H-NMR, and mass spectrometry.

Keywords- Thiazolidine-4-one, Mefenamic Acid.

#### I. INTRODUCTION

2-[N-(2,3-dimethylphenyl)amino]benzoic acid (mefenamic acid) or ponstan, is a kind of nonsteroidal anti-inflammatory medication (NSAID) that demonstrates properties that are anti-inflammatory, analgesic, and antipyretic. [1,2]. It has a wide range of applications as a therapeutic agent, and in 2012 alone, more than 100 million treatments with NSAIDs were carried out all over the world.[3] The maximum safe dose of this medication is between 500 and 250 milligrams spread out over a period of seven days. Mefenamic acid works by inhibiting COX (cyclooxygenase enzymes), which are essential for the generation of prostaglandins. This is how it achieves its therapeutic effects [4,5]. Structure of the aromatic amino acid mefnamic acid (Figure 1). This may also have physiologic effects.[6].



Figure1: Mefenamic acid structure

This chemical has a limited biological half-life of two hours and has very poor solubility in gastrointestinal irritants and biological fluids.[7] People still use it to treat pain, gout, and headaches. Doctors don't really know what causes pain. The World Health Organization says that 90% of all diseases cause pain. [8-9]. Mefenamic acid (MA) has been identified as an antirheumatic agent. Moreover, new research have reported on the therapeutic potential of this medicine for cancer cell lines and Alzheimer's disease.[10, 11].

#### II. EXPERIMENTAL PART

#### 2.1. Material & Methods

Every one of the compounds that were employed was of the purest possible kind. This entire paper's worth of beginning materials came from Sigma-Aldrich, where they were all purchased. The following are some of the equipment that were utilized for the characterisation of the compounds that were prepared: Melting points were calculated using an instrument called the Gallenkamp MFB-600-Melting point Stuart, and FT-IR spectra were obtained using a spectrometer called a Bruker. 1H-NMR was captured using a Bruker AC 400 NMR spectrometer,

which had a recording frequency of 400 MHz for 1H-NMR and a recording frequency of 100 MHz for 13C-NMR. All chemical changes, denoted by the symbol, are given in terms of parts per million (ppm), with tetramethylsilane (TMS) serving as the standard (=0.0 ppm). In order to conduct the analysis of mass spectra, the equipment known as the Agilent Technology MS 5973 was utilized.

# **2.1.2.** Procedure for Synthesis of 2-(2-chloro-N-(2,3-dimethylphenyl) acetamido) benzoic acid compound (A)

1 g (0.00414 mol) of Mefenamic Acid in 4 mL of DCM was dissolved in a 100 mL two-neck round bottom flask and added to 0.4 mL of TEA. The mixture was stirred for ten minutes in an ice bath, and then added, 0.467 mL) (0.00414 mol) from Chloroacetyl chloride through a drop-by-drop distillation funnel. For forty minutes, the mixture was stirring in r.t. Leaching a precipitate with a Buechner funnel, and the result was recrystallized from ethanol. Color yellow, m.p. 170-172 oC, yield = 82 %.



#### 2.1.3. Procedure for Synthesis 2-(N-(2,3dimethylphenyl)-2-hydrazineylacetamido) benzoic acid compound (B)

1 g (0.00414 mol) of compound A prepared in 5 mL of ethanol absolute was dissolved in a 50 mL twoneck round bottom flask and added to 3 mL of hydrazine hydrate. The mixture was refluxed for 7 hours. The https://doi.org/10.55544/jrasb.2.5.24

reaction mixture was left to cool, then stirred for an hour. Using a Buechner funnel, a precipitate was leached, and the result was recrystallized from ethanol. Color: yellowish green, m.p. 140-142 °C, yield = 78 %.



### **2.1.4.** Procedure for Synthesis Schiff bases compound (C1-C9)

In a 100 mL two-neck round bottom flask, (0.021mol) mole of benzaldehyde or one of its derivatives and absolute ethanol plus(4drops) of glacial acetic acid were added. The mixture was agitated for ten minutes before (0.021mol of compound B dissolved in 20 ml of absolute ethanol) was added through a distillation funnel drop-by-drop. For 3 hours, the mixture was refluxed. After allowing the reaction mixture to settle, it was agitated for one hour. A precipitate was leached using a Buechner funnel, and the result was recrystallized from ethanol. Table (1) lists the physical constants of the prepared Schiff's bases.



| Comp.<br>Symb. | Ar   | Molecular Formula | Mol. Wt.<br>gm/mole | Yields% | M.P         | Color              |
|----------------|------|-------------------|---------------------|---------|-------------|--------------------|
| C1             |      | C24H21N3O5        | 431.45              | 83      | 188-<br>190 | Yellow             |
| C2             |      | C24H21N3O5        | 431.45              | 83      | 195-<br>197 | Yellowish<br>green |
| С3             | ОСН3 | C26H26N2O5        | 446.50              | 75      | 189-<br>191 | Yellow             |
| C4             |      | C24H20Cl2N2O3     | 455.34              | 70      | 199-<br>201 | Yellow             |

Table (1): The Molecular formula, physical constants of Schiff's base compounds (C<sub>1</sub>-C9).

### ISSN: 2583-4053

www.jrasb.com

Volume-2 Issue-5 || October 2023 || PP. 146-160

https://doi.org/10.55544/jrasb.2.5.24

| C5 | Cl                                     | C24H21CIN2O3 | 420.89 | 77 | 226-<br>228 | Yellow             |
|----|----------------------------------------|--------------|--------|----|-------------|--------------------|
| C6 | - ×                                    | C26H27N3O3   | 429.52 | 96 | 234-<br>236 | Yellowish<br>green |
| C7 | —————————————————————————————————————— | C25H24N2O3   | 400.48 | 78 | 222-<br>224 | Yellow             |
| C8 | —————————————————————————————————————— | C25H24N2O4   | 416.48 | 80 | 208-<br>210 | Yellow             |
| С9 |                                        | C24H22N2O3   | 386.45 | 77 | 205-<br>207 | Yellow             |

#### **2.1.3.** Method for the preparation of 1,3-Thiazolidine-4-one Derivatives (D<sub>1</sub>-D<sub>9</sub>)

In a two-neck, round-bottom flask containing a condenser, 0.002 mol of Schiff base was dissolved in 15 ml of dioxane and stirred for ten minutes. placed in a water immersion at 68 degrees Celsius. Then dissolve 0.02 mol of thioglycolic acid in 20 ml of dioxane. Then, the mixture was introduced through the distillation receptacle drop by drop, and as soon as the reaction components were thoroughly combined, the turbidity of the mixture was observed. The mixture was subjected to about six hours of refluxing. After the conclusion of the escalation period, a portion of the solvent was exhausted,

and a precipitate was observed to form. Using a Buechner funnel, the precipitate was filtered, rinsed with distilled water, allowed to dry, and then re-washed with chloroform. 1,3-Thiazolidine-4-one physical characteristics the following derivatives are listed in Table 2:



| Comp.<br>Symb. | Molecular<br>Formula | Mol. Wt.<br>gm/mole | Yields% | M.P     | Color      |
|----------------|----------------------|---------------------|---------|---------|------------|
| D1             | C26H23N3O6S          | 505.55              | 81      | 225-227 | Orange     |
| D2             | C26H23N3O6S          | 505.55              | 94      | 256-258 | Yellow     |
| D3             | C28H28N2O6S          | 520.60              | 83      | 279-281 | Yellow     |
| D4             | C26H22Cl2N2O4S       | 529.43              | 87      | 233-235 | Yellow     |
| D5             | C26H23CIN2O4S        | 494.99              | 89      | 279-281 | Yellow     |
| D6             | C28H29N3O4S          | 503.62              | 60      | 233-235 | Orange     |
| D7             | C27H26N2O4S          | 474.58              | 77      | 221-223 | Oil Yellow |
| D8             | C27H26N2O5S          | 490.57              | 80      | 279-281 | Yellow     |
| D9             | C26H24N2O4S          | 460.55              | 72      | 233-235 | Yellow     |

#### Table (2): The Molecular formula melting point of compounds (D1-D9)

#### III. RESULTS & DISCUSSION

### 3.1. Preparation and identification of 2-(2-chloro-N-(2,3-dimethylphenyl)acetamido)benzoic acid (A)

Compound A was synthesized by reaction of Mefenamic Acid and Chloroacetyl chloride, Compound A FT IR spectram indicated a wide band in the range 2526-3341 cm-1 due to the OH group assigned to the carboxylic group, as well as substantial absorption in the region 3070 cm-1 attributed to the Aromatic (C-H). The (C=O) group has an absorption band with a wavelength of 1712 cm-1.[12]

Further identification for compound A was performed using 1H-NMR, spectram of the compound was comprised of a single signal in [ $\delta$ =1.92 ppm,(s,3H),CH3] ppm which ascribed to the methyl group aliphatic, and a single signal in [ $\delta$ =6.68 ppm,(s,2H),CH2] ppm which ascribed to the methylene group, several different signals within the range [ $\delta$ =7.04–7.88 ppm,(m,7H), Ar-H] ppm which ascribed to the aromatic rings, and a single signal in [ $\delta$ =7.90 ,(s,1H),OH] ppm, which ascribed to the carboxylic acid proton. The 1H-NMR spectra for compound A are shown in Fig. 2.[13]

www.jrasb.com

https://doi.org/10.55544/jrasb.2.5.24



Further identification for compound A was performed using 13C-NMR, spectram of compound was comprised of a signal in [ $\delta$ =14.14 ppm] which ascribed to the aliphatic methyl carbon, and a signal in [ $\delta$ =20.39 ppm] ppm which ascribed to the methylene group, a several different signals within the range [ $\delta$ =111.87-

144.21 ppm] which ascribed to the aromatic rings, and a signal in [ $\delta$ =166.56 ppm] which ascribed to the carbonyl amide, and a signal in [ $\delta$ =170.70 ppm] carboxylic acid. The 13C-NMR spectram for compound A is shown in the fig(3)[13].



Mass spectrometry was used to calculate the molecular mass of the compound by identifying the

molecular ion and base Peak. The fragmentation pattern of the compound (A) is depicted in Fig. (4). [14].

www.jrasb.com

https://doi.org/10.55544/jrasb.2.5.24



This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

www.jrasb.com

#### 3.2. Synthesis and characterization of 2-(N-(2,3dimethylphenyl)-2-hydrazineylacetamido) benzoic acid compound (B)

Compound B was synthesized by reaction of compound A prepared and hydrazine hydrate , Compound B FT IR spectram indicated a Double band in the range (3371, 3336 cm-1) attributed to the NH2 group assigned to the amin group, as well as substantial absorption in the region 3066 cm-1 attributable to the Aromatic (C-H). The (C=O) group has an absorption band with a wavelength of 1633 cm-1.[12]

Further identification for compound B was performed using 1H-NMR, spectram of the compound



https://doi.org/10.55544/jrasb.2.5.24

was comprised of a single signal in [ $\delta$ =2.11 ppm,(s,3H),CH3] ppm which ascribed to the methyl group aliphatic, and a single signal in [ $\delta$ =3.25 ppm,(s,2H),CH2] ppm which ascribed to the methylene group, and a single signal in [ $\delta$ =3.44 ppm,(s,1H),NH] ppm which ascribed to the amine secondary group, and a single signal in [ $\delta$ =4.59 ppm,(s,2H),NH2] ppm which ascribed to the amine primary group, several different signals within the range [ $\delta$ =6.69-9.48 ppm,(m,7H), Ar-H] ppm which ascribed to the aromatic rings, and a single signal in [ $\delta$ =9.82 ppm,(s,1H),OH] ppm, which ascribed to the carboxylic acid proton. The 1H-NMR spectra for compound B are shown in Fig.5. [13]



Mass spectrometry was used to calculate the molecular mass of the compound by identifying the

molecular ion and base Peak. The fragmentation pattern of the compound (B) is depicted in Fig. (6). [14].





This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

www.jrasb.com

Volume-2 Issue-5 || October 2023 || PP. 146-160

https://doi.org/10.55544/jrasb.2.5.24



Scheme 2: fragmentation pattern of compound B

### 3.3. Synthesis and characterization of Schiff's basescompounds(C1-C9)

Compound B was produced by reacting benzaldehyde or one of its derivatives with Schiff's bases. The FT IR spectra of compounds (C1-C9) exhibited an absorption band within the range (3088-3026 cm-1) attributed to the aromatic (C-H). The (C=N) absorption band is located in the range ((1653-1627 cm-1). azomethine group (C=N) absorption in the region 1622-1636cm-1 [12]. Table (4) shows the findings, in addition to the presence of stretching absorption in the other groups.

|      | NH   | vC   | -H     | C-N  | <b>у</b> С==С |      |                           |
|------|------|------|--------|------|---------------|------|---------------------------|
| Comp | NH   | Arom | Aliph. | VC=N |               |      | Others                    |
| C1   | 3344 | 3068 | 2983   | 1653 | 1597          | 1437 | NO2 asym 1570<br>Sym 1381 |
| C2   | 3404 | 3068 | 2922   | 1631 | 1583          | 1494 | NO2 asym 1518<br>Sym 1450 |
| C3   | 3311 | 3072 | 2966   | 1653 | 1575          | 1444 | C-O 1016                  |
| C4   | 3344 | 3088 | 2916   | 1653 | 1568          | 1487 | C-Cl 746                  |
| C5   | 3404 | 3028 | 2945   | 1629 | 1583          | 1467 | C-Cl 744                  |
| C6   | 3304 | 3030 | 2912   | 1627 | 1581          | 1450 | C-N 1046                  |
| C7   | 3311 | 3069 | 2916   | 1651 | 1575          | 1448 | C-H alp.2916              |
| C8   | 3311 | 3063 | 2972   | 1651 | 1575          | 1450 | C-O 1024                  |
| С9   | 3352 | 3026 | 2941   | 1629 | 1504          | 1446 | •••••                     |

Table (3): IR characteristic absorption of compounds C<sub>1</sub>-C9 cm<sup>-1</sup>

Further identification of compounds (C1-C9) was performed using 1H-NMR. Compound spectra consisted of a single signal within the range [1.92-3.83 (s)] ppm attributed to the aliphatic proton of the methyl and methylene groups, and several different signals within the range [6.68 - 8.73 (m)] attributed to the protons

aromatic rings and secondary amine group. and a single signal in the range [7.92-9.30 (s, 1H)] ppm attributed to the C=N proton, and a single signal in the range [8.73-11.95 (s,1H),OH] ppm attributed to the carboxylic acid proton. Table 4 displays the 1H-NMR data and spectra for compounds (C1-C9). [13].

**ISSN: 2583-4053** Volume-2 Issue-5 || October 2023 || PP. 146-160

www.jrasb.com

| https://doi.org | /10.55544 | /jrasb.2.5.24 |
|-----------------|-----------|---------------|
|-----------------|-----------|---------------|

|                | Table (4): <sup>1</sup> H-NMR spectrum | ctra for compounds C2-C9 |                   |                |                              |  |
|----------------|----------------------------------------|--------------------------|-------------------|----------------|------------------------------|--|
| Comp.<br>Symb. | Structure                              | Chemical<br>Shift(ppm)   | No. of<br>Protons | Type of single | Group                        |  |
|                | CH <sub>3</sub>                        | 2.10- 2.29               | 8                 | s              | CH3-C <u>H</u> 2-<br>alip.   |  |
|                | CH <sub>3</sub>                        | 6.68- 8.73               | 12                | m              | C <mark>H</mark> -Ar.        |  |
| <b>G2</b>      | C–N COOH                               | 8.93                     | 1                 | S              | C=N                          |  |
| C2             | $O_2N$                                 | 11.50                    | 1                 | s              | -O <mark>H</mark><br>Carbox. |  |
|                | CH <sub>3</sub>                        | 2.10-3.83                | 14                | s              | CH3-C <u>H</u> 2-<br>alip.   |  |
|                |                                        | 6.68-7.90                | 11                | m              | C <mark>H</mark> -Ar.        |  |
|                | С-Л СООН                               | 8.64                     | 1                 | s              | C=N                          |  |
| C3             | HN —                                   |                          |                   |                |                              |  |
|                |                                        | 9.49                     | 1                 | s              | -O <u>H</u><br>Carbox.       |  |
|                | CH <sub>3</sub>                        | 1.92-2.26                | 8                 | s              | CH3-C <u>H</u> 2-<br>alip.   |  |
| C5             |                                        | 6.58-7.90                | 12                | m              | C <u>H</u> -Ar.              |  |
| 05             |                                        | 7.92                     | 1                 | s              | C=N                          |  |
|                |                                        | 8.73                     | 1                 | s              | -O <u>H</u><br>Carbox.       |  |
|                | CH <sub>3</sub>                        | 2.13-2.51                | 8                 | s              | CH3-C <u>H</u> 2-<br>alip.   |  |
| С9             | O<br>C-N<br>COOH                       | 6.79-8.47                | 13                | m              | C <u>H</u> -Ar.              |  |
|                |                                        | 9.30                     | 1                 | s              | C=N                          |  |
|                |                                        | 11.95                    | 1                 | s              | -O <u>H</u><br>Carbox.       |  |

www.jrasb.com

https://doi.org/10.55544/jrasb.2.5.24



Further identification for compounds (C1-C9) range [ $\delta$ =109.61-152 aromatic rings, and a signal within the range [ $\delta$ =14.00 - 14.14 ppm] which ascribed to the aliphatic methyl carbon , and a signal within the range [ $\delta$ =20.70-20.83 ppm] ppm which ascribed to the methylene group, and a signal within the range [ $\delta$ =138.86- 140.91 ppm] ppm which ascribed to the C=N ,a several different signals within the Table (5): <sup>13</sup>C-NMR spectra for compounds C2-C9

range [ $\delta$ =109.61-152.08 ppm] which ascribed to the aromatic rings, and a signal within the range [ $\delta$ =148.36-161.22 ppm] which ascribed to the carbonyl amide, and a signal within the range [ $\delta$ =166.09-172.64 ppm] carboxylic acid . The 13C-NMR data and spectra for compounds (C1-C9) are shown in table 5 [13].

| Comp.<br>Symb. | С-СНЗ | C-CH2 | C=N    | Ar-C           | C=O<br>amide | C=O carboxylic |
|----------------|-------|-------|--------|----------------|--------------|----------------|
| C2             | 14.13 | 20.70 | 140.71 | 112.73- 149.02 | 160.94       | 170.94         |
| C3             | 14.14 | 20.70 | 138.86 | 109.61-152.08  | 161.22       | 170.70         |
| C5             | 14.14 | 20.83 | 140.91 | 113.23-147.40  | 161.07       | 172.64         |
| С9             | 14.00 | 20.75 | 139.53 | 114.57-147.15  | 148.38       | 166.09         |



Figure 8: <sup>13</sup>C NMR spectrum of compound C5

Table (6) displays the m / z values of the M + molecular ion as well as some of the produced compounds' base peak. Table (6): The m / z values of the M + molecular ion and some of compounds C1-C5

| Compounds Symb. | m             | /z        |
|-----------------|---------------|-----------|
|                 | Molecular Ion | Base Peak |

**C1** 

C2

www.jrasb.com

C7H7+

91.1

C7H6+•



C24H22N4O5

446.4

C24H20N4O5 +•



fragmentation pattern of compound C1

Scheme 3:

NH

C<sub>9</sub>H<sub>9</sub>NO<sub>2</sub>\*\*

m/z: 163.1

 $-C_2H_2$ 

 $C_5H_7^+$ 

m/z: 67.1

 $C_4 H_7^+$ 

m/z: 55.1

 $C_6H_5^+$ 

m/z: 77.1

-C

-⊕

C<sub>16</sub>H<sub>14</sub>N<sub>4</sub>O<sub>3</sub><sup>•+</sup> m/z: 310.1

https://doi.org/10.55544/jrasb.2.5.24

www.jrasb.com

#### 3.2. Preparation and identification of 1,3- Thiazolidine-4-one Derivatives(D<sub>1</sub>-D9)

Thiazolidine-4-one Derivatives were produced utilizing Dioxane as a solvent in reactions of Schiff base and thioglycolic acid. FT IR spectra for compounds (D1-D9) revealed the lack of the (vC=N) absorption band for the azomethine group. Compound FT-IR spectra indicated an absorption band in the range 3058-3130cm-1 owing to the aromatic (C-H) group, as well as a significant absorption band in the range 1655-1685cm-1 attributable to the (C=O) carboxylic acid and lactam group [12]. Table 7 includes data on the stretching absorption of the other groups in addition to the appearance of stretching absorption.

|      | NH   | ١    | <b>/С-Н</b> | vC=O    |               |      |     |                           |  |  |
|------|------|------|-------------|---------|---------------|------|-----|---------------------------|--|--|
| Comp |      | Arom | Aliph.      | lactame | <b>у</b> С==С |      |     | Others                    |  |  |
| D1   | 3344 | 3007 | 2985        | 1728    | 1597          | 1437 | 686 | NO2 asym 1521<br>Sym 1437 |  |  |
| D2   | 3444 | 3051 | 2939        | 1726    | 1597          | 1473 | 782 | NO2 asym 1579<br>Sym 1448 |  |  |
| D3   | 3360 | 3070 | 2986        | 1734    | 1575          | 1423 | 657 | C-O 1020                  |  |  |
| D4   | 3311 | 3088 | 2974        | 1732    | 1579          | 1450 | 665 | C-Cl 752                  |  |  |
| D5   | 3346 | 3007 | 2974        | 1728    | 1573          | 1446 | 663 | C-Cl 752                  |  |  |
| D6   | 3313 | 3032 | 2910        | 1629    | 1597          | 1446 | 650 | C-N 1176                  |  |  |
| D7   | 3311 | 3007 | 2972        | 1726    | 1575          | 1446 | 661 | C-H alp.2973              |  |  |
| D8   | 3311 | 3009 | 2974        | 1730    | 1590          | 1446 | 663 | C-O 1026                  |  |  |
| D9   | 3352 | 3028 | 2937        | 1712    | 1577          | 1448 | 642 |                           |  |  |

Table (7): IR characteristic absorption of compounds $D_1$ - $D_9$  cm<sup>-1</sup>

Further identification for compounds (D1-D8) was performed using 1H-NMR, spectra of compounds were comprised of a single signal within the range [2.10-5.26 (s)] ppm which ascribed to the methyl and methylene group aliphatic proton, and a several different signals within the range [ $\delta$  6.68 – 8.64 (m)] attributed to the

protons aromatic rings and secondary amine group. and a single signal in [6.67 (s, 1H)] ppm which ascribed to the C-H Thiazolidine proton, and a single signal in [ $\delta$ =9.50-9.51 ppm,(s,1H),OH] ppm, which ascribed to the carboxylic acid proton. The 1H-NMR data and spectra for compounds (D1-D8) are shown in table 8 [13].

| Comp.<br>Symb. | Structure                         | Chemical<br>Shift(ppm) | No. of<br>Protons | Type<br>of<br>single | Group                  |
|----------------|-----------------------------------|------------------------|-------------------|----------------------|------------------------|
|                | O <sub>2</sub> N                  | 2.10- 3.76             | 10                | S                    | CH3-C <u>H</u> 2-alip. |
|                | CH <sub>3</sub>                   | 3.76                   | 1                 | S                    | CH-<br>Thiazolidine    |
|                | O <sup>CH3</sup>                  | 6.67                   | 1                 | S                    | N-H                    |
| D1             |                                   | 6.68-7.90              | 11                | m                    | C <u>H</u> -Ar.        |
|                | S C COOH                          | 9.50                   | 1                 | S                    | -O <u>H</u> Carbox.    |
|                | H <sub>3</sub> CO                 | 2.10-5.26              | 16                | S                    | CH3-C <u>H</u> 2-alip. |
|                | H <sub>3</sub> CO CH <sub>3</sub> | 5.28                   | 1                 | S                    | C-H<br>Thiazolidine    |
|                | O <sup>CH3</sup>                  | 6.67                   | 1                 | S                    | N <u>H</u>             |
| D3             | D3 $\mathbb{N}H$                  | 6.68-8.64              | 10                | m                    | C <u>H</u> -Ar.        |
|                | S<br>C<br>O<br>C<br>C             | 9.50                   | 1                 | S                    | -O <u>H</u> Carbox.    |

Table (8): <sup>1</sup>H-NMR spectra for compounds D2-D8

156

#### ISSN: 2583-4053

Volume-2 Issue-5 || October 2023 || PP. 146-160

www.jrasb.com

https://doi.org/10.55544/jrasb.2.5.24





Further identification for compounds (D1-D8) was performed using 13C-NMR, spectra of compounds were comprised of a signal within the range [ $\delta$ =14.12 - 14.14 ppm] which ascribed to the aliphatic methyl carbon , and a signal within the range [ $\delta$ =20.69-20.71 ppm] ppm which ascribed to the methylene group, and a signal within the range [ $\delta$ =55.85-66.83 ppm] ppm which

ascribed to the C-Thiazolidine ,a several different signals within the range [ $\delta$ =109.59-149.20 ppm] which ascribed to the aromatic rings, and a signal within the range [ $\delta$ =149.22- 161.22 ppm] which ascribed to the carbonyl amide, and a signal within the range [ $\delta$ =170.69-171.29 ppm] carboxylic acid . The 13C-NMR data and spectra for compounds (D1-D8) are shown in table 9 [12].

| Comp.<br>Symb. | С-СНЗ | C-CH2 | C Thiazolidine | Ar-C           | C=O<br>amide | C=O carboxylic |
|----------------|-------|-------|----------------|----------------|--------------|----------------|
| D1             | 14.14 | 20.71 | 66.83          | 111.76- 138.83 | 149.22       | 170.69         |
| D3             | 14.12 | 20.69 | 63.28          | 109.59-138.86  | 161.22       | 171.29         |
| D8             | 14.14 | 20.70 | 55.85          | 111.85-149.20  | 160.96       | 170.72         |

 Table (9): <sup>13</sup>C-NMR spectra for compounds D1-D8

https://doi.org/10.55544/jrasb.2.5.24



Table (10) shows the m / z values of the M + prepared compounds

molecular ion and some of the generated fragments of the

| Table (10). The r            | / 7 volues of the M     | malagular ian and some   | of compounds D1 D0 |
|------------------------------|-------------------------|--------------------------|--------------------|
| $1 a \mu e (10)$ , $1 e \mu$ | 1/L values of the $1VI$ | - molecular ron and some | VI COMPOUNDS DI-D7 |

| Compounds Symb. | m/z              |           |
|-----------------|------------------|-----------|
|                 | Molecular Ion    | Base Peak |
| D2              | C26H22N4O6S+•    | C7H6+•    |
|                 | 519.1            | 90.1      |
| D3              | C28H27N3O6S+•    | C7H6+•    |
|                 | 533.1            | 90.1      |
| D4              | C26H21Cl2N3O4S+• | C7H7+     |
|                 | 541.1            | 92.1      |
| D5              | C26H22ClN3O4S+•  | C7H6+•    |
|                 | 507.1            | 90.1      |
| D6              | C28H28N4O4S+•    | C7H6+•    |
|                 | 516.1            | 90.1      |





This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

www.jrasb.com

**ISSN: 2583-4053** Volume-2 Issue-5 || October 2023 || PP. 146-160

www.jrasb.com

https://doi.org/10.55544/jrasb.2.5.24



Scheme 4. In agmentation pattern of compound

The comprehensive analysis of spectroscopic data (including FT-IR, 1H-NMR, and Mass) provided valuable insights on the structural assignments of these compounds.

#### **IV. CONCLUSIONS**

Finally, we developed and synthesized eight new chemical derivatives of mefenamic acid. This innovative class of chemicals will be beneficial in the creation of future medicines.

#### REFERENCES

[1] D. Utami, I. Nugrahani, and S. Ibrahim, "Formation and characterization of mefenamic acid-nicotinamide cocrystal during comilling based on X-ray powder diffraction analysis," *J. Appl. Pharm.Sci.*, vol. 6, no. 10, pp. 075–081, 2016, doi: 10.7324/JAPS.2016.601010. [2] P. A. R., "Drug Development of Mefenamic Acid Derivatives as Analgesic by Molecular Approach," *Int. J. Pharm. Clin. Res.*, vol. 9, no. 2, pp. 123–130, 2017, doi: 10.25258/ijpcr.v9i2.8294.

[3] M. N. Somchit, F. Sanat, G. E. Hui, S. I. Wahab, and Z. Ahmad, "Mefenamic acid induced nephrotoxicity: An Animal Model," *Adv. Pharm. Bull.*, vol. 4, no. 4, pp. 401–404, 2014, doi: 10.5681/apb.2014.059.

[4] D. P. Kemisetti, S. Manda, J. Aukunuru, K. M. Chinnala, and N. K. Rapaka, "Synthesis of prodrugs of mefenamic acid and their in vivo evaluation," *Int. J. Pharm. Pharm. Sci.*, vol. 6, no. 7, pp. 437–442, 2014.

[5] E. Dilek, S. Caglar, N. Dogancay, B. Caglar, O. Sahin, and A. Tabak, "Synthesis, crystal structure, spectroscopy, thermal properties and carbonic anhydrase activities of new metal(II) complexes with mefenamic acid and picoline derivatives," *J. Coord. Chem.*, vol. 70, no. 16, pp. 2833–2852, 2017, doi: 10.1080/00958972.2017.1366996.

[6] L. Zapała, M. Kosińska, E. Woźnicka, Ł. Byczyński, and W. Zapała, "Synthesis, spectral and

www.jrasb.com

thermal study of La(III), Nd(III), Sm(III), Eu(III), Gd(III) and Tb(III) complexes with mefenamic acid," *J.Therm. Anal. Calorim.*, vol. 124, no. 1, pp. 363–374, 2016, doi: 10.1007/s10973-015-5120-0.

[7] E. O. F. Spherical, A. Crystals, L. Fast, T. For, E. The, and M. Acid, "Design and Evaluation of Spherical Agglomerated Crystals Loaded Fast Disolving Tablets for Enhancing the Solubilityof," vol. 4, no. 11, pp. 4610–4616, 2017.

[8] E. Zaini, L. Fitriani, R. Y. Sari, H. Rosaini, A. Horikawa, and H. Uekusa, "Multicomponent Crystal of Mefenamic Acid and N-Methyl- D-Glucamine: Crystal Structures and Dissolution Study," *J. Pharm.Sci.*, vol. 108, no. 7, pp. 2341–2348, 2019, doi: 10.1016/j.xphs.2019.02.003.

[9] N. Kumar, L. S. Chauhan, C. S. Sharma, N. Dashora, and R. Bera, "Synthesis, analgesic and antiinflammatory activities of chalconylincorporated hydrazone derivatives of mefenamic acid," *Med. Chem. Res.*, vol. 24, no. 6, pp. 2580–2590, 2015, doi: 10.1007/s00044-015-1318-8. https://doi.org/10.55544/jrasb.2.5.24

[10] C. Konnerth, V. Braig, A. Ito, J. Schmidt, G. Lee, and W. Peukert, "Formation of Mefenamic Acid Nanocrystals with Improved Dissolution Characteristics," *Chemie-Ingenieur-Technik*, vol. 89, no. 8, pp. 1060– 1071, 2017, doi: 10.1002/cite.201600190.

[11] P. Chatterjee, T. Dey, S. Pal, and A. K. Mukherjee, "Two mefenamic acid derivatives: Structural study using powder X-ray diffraction, Hirshfeld surface and molecular electrostatic potential calculations," *Zeitschrift fur Krist. - Cryst. Mater.*, vol. 232, no. 5, pp. 385–394, 2017, doi: 10.1515/zkri-2016-2009.

[12] William H. Brown, Brent L. Iverson, Eric V. Anslyn, Christopher S. Foote, Organic Chemistry, 7<sup>Ed</sup>, Wadsworth Cengage Learning, (2014).

[13] Jonathan Clayden, Nick Greeves, Stuart Warren, ORGANIC chemistry, 2Ed, Oxford University Press Inc, 2012.

[14] Robert M. Silverstein, Francis X. Webster, David J. Kiemle, spectrometric Identification of Organic compounds, 7<sup>th</sup> Ed, John- Wiley & Sons, INC, (2005)