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ABSTRACT  

 
Cyclic groups are common in our everyday life. A cyclic group is a group with an element that has an operation applied 

that produces the whole set. A cyclic group is the simplest group. A cyclic group could be a pattern found in nature, for example 

in a geometric pattern we draw ourselves. Cyclic groups can also be thought of as rotations, if we rotate an object enough time 

we will eventually return to the original position. In this research paper we explore further applications of cyclic groups in 

number theory like division algorithm and Chinese remainder theorem and other applications including chaos theory, 12-hour 

clock, modular system, bell ringing, linear codes. If someone can recognize a cyclic group, they could use the generator to find 

the fastest simple circuit for use in other real-world applications and in pure mathematics. 
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I. INTRODUCTION 
 

Cyclic groups are the simplest groups. A cyclic 

subgroup is closed. Cyclic groups are the building blocks 

of abelian groups. 

There is a difference between an ordinary group 

and a cyclic group. The rational numbers are a group 

under addition, but there is no rational number that 

generates all the rational numbers. The integers have a 

generator of 1 and -1, We have clarified this concept by 

example. 

First, we will define group and their properties. 

Definition. A group is an ordered pair (𝐺,∗), where 𝐺 is 

a nonempty set and ∗ is a binary operation on 𝐺 such 

that the following properties hold: 

(𝐴1) For all 𝑎, 𝑏, 𝑐 ∈ 𝐺,   𝑎 ∗ (𝑏 ∗ 𝑐) = (𝑎 ∗ 𝑏) ∗ 𝑐 

(associative law). 

(𝐴2) There exists , 𝑒 ∈ 𝐺 such that for all , 𝑎 ∈ 𝐺, 𝑎 ∗
𝑒 = 𝑒 ∗ 𝑎 (existence of an identity). 

(𝐴3) For all 𝑏 ∈ 𝐺, there exists 𝑏ˊ ∈ 𝐺 such that 𝑏 ∗ 𝑏ˊ =
𝑒 = 𝑏ˊ ∗ 𝑏 (existence of an inverse). 

Thus, a group is a mathematical system (𝐺,∗)  

satisfying axioms 𝐴1 to 𝐴3 [2]. 

Examples of Groups: 

1. (ℤ, +) is a group with identity 0. The inverse of 𝑥 ∈
ℤ is −𝑥. 

2. (ℚ, +) is a group with identity 0. The inverse of 𝑥 ∈
ℚ is −𝑥. 

3. (ℝ, +) is a group with identity 0. The inverse of 𝑥 ∈
ℝ is −𝑥. 
Associative law is also satisfying [7]. A group G is 

called cyclic if there is an element than generates the 

entire set by repeatedly applying an operation [4], for 

more clarification we have the following definition.  

Definition 1. If a group 𝐺 = ⟨𝑎⟩ for some 𝑎 ∈ 𝐺 then we 

say 𝐺 is a cyclic group. Moreover, any element 𝑏 for 

which ⟨𝑏⟩ = 𝐺 is called a generator of 𝐺. 
That said, let me just give a few examples to get 

used to the idea of a generator. 

Example 1. A nice infinite group example is found in 
(ℤ, +). Observe, 

⟨1⟩ = {𝑛(1) 𝑛 ∈ ℤ} = ℤ. 
 likewise, ⟨−1⟩ = {𝑛(−1) 𝑛 ∈ ℤ} = ℤ. Thus Z is 

generated by both 1 and −1. 
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Example 2. ℤ4 = {0, 1, 2, 3} has ⟨1⟩ = {0, 1, 2, 3} and 
⟨2⟩ = {0, 2} and ⟨3⟩ = {0, 3, 2, 1} hence 1 and 3 = −1 

serve as generators for ℤ4 [3]. 

Cyclic groups can be thought of as rotations. 

An object with rotational symmetry is also known in 

biological contexts as radial symmetry. 

 
Figure 1: 𝟗𝟎 degree rotations of a square 

 

We can draw a square moving 90 degrees 4 

times (Figure 2). For a polygon with n sides, we can 

divide 360 𝑛⁄  to determine how may degrees each 

rotation will be to return to the original position. 

Not all shape rotations are considered cyclic. 

The rotation of a circle is not cyclic. It is not like the 

infinite cyclic group because it is not countable. A circle 

has an infinite number of sides. We cannot map every 

side to the integers therefore a circle’s rotations are not 

countable. 

 

II. APPLICATIONS OF CYCLIC 

GROUP IN NUMBER THEORY 
 

Cyclic groups are found in nature, patterns, and 

other fields of mathematics. A common application of a 

cyclic group is in number theory. The division algorithm 

is a fundamental tool for the study of cyclic groups. 

Division algorithm for integers: if 𝑚 is a 

positive integer and 𝑛 is any integer, then there exist 

unique integers 𝑞 and 𝑟 such that, 

 

𝑛 = 𝑚𝑞 + 𝑟 and 0 ≤ 𝑛 < 𝑚. 

Example 1. Find the quotient 𝑞 and remainder 𝑟 when 

45 is divided by 7 according to the division algorithm. 

The positive multiples of 7 

are 7, 14, 21, 28, 35, 42, 49, … 

 

45 = 42 + 3 = 7(6) + 3 

The quotient is 𝑞 = 6 and the remainder is 𝑟 = 3. 

You can use the division algorithm to show that 

a subgroup (𝐻,∗) of a cyclic group (𝐺,∗) is also cyclic.   

Theorem 1. A subgroup of a cyclic group is cyclic.   

Proof. Let 𝐺 be a cyclic group generated by 𝑎 and let 𝐻 

be a subgroup of 𝐺. If 𝐻 = 𝑒, then 𝐻 = ⟨𝑒⟩ is cyclic. If 

𝐻 ≠ 𝑒, then 𝑎𝑛 ∈ 𝐻 for some 𝑛 ∈ ℤ+.Let 𝑚 be the 

smallest integer in ℤ+ such that 𝑎𝑚 ∈ 𝐻. 𝐶 = 𝑎𝑚 

generates 𝐻. 𝐻 = ⟨𝑎𝑚⟩ = ⟨𝑐⟩.  
We must show that every 𝑏 ∈ 𝐻 is a power of 𝑐. Since 

𝑏 ∈ 𝐻 and 𝐻 ≤ 𝐺, we have 𝑏 = 𝑎𝑛 for some 𝑁. Find a 

𝑞 and 𝑟 such that 

𝑛 = 𝑚𝑞 + 𝑟 and 0 ≤ 𝑟 < 𝑚. 

Then 

𝑎𝑛 = 𝑎𝑚𝑞+𝑟 = (𝑎𝑚)𝑞𝑎𝑟 , 
So 

𝑎𝑟 = (𝑎𝑚)−𝑞𝑎𝑟  

Since 𝑎𝑛 ∈ 𝐻, 𝑎𝑚 ∈ 𝐻 H and 𝐻 is a group, both (𝑎𝑚)−𝑞  

and 𝑎𝑛  are in H. Thus (𝑎𝑚)−𝑞𝑛 ∈ 𝐻, 𝑎𝑟 ∈ 𝐻 then Since 

𝑚 was the smallest positive integer such that 𝑎𝑚 ∈ 𝐻 

and 0 ≤ 𝑟 < 𝑚,  we must have that 𝑟 = 0. Thus 𝑛 =
𝑚𝑞 and 

𝑏 = 𝑎𝑛 = (𝑎𝑚)𝑞 = 𝑐𝑞 ,  
So 𝑏 is a power of 𝑐                                                                                                                          

∎  

Definition: Let 𝑟 and 𝑠 be two positive integers. The 

positive integer 𝑑 of the cyclic group 

𝐻 = 𝑟𝑛 + 𝑚𝑠/𝑛, 𝑚 ∈ ℤ 

under addition is the greatest common divisor of both 

𝑟 = 1𝑟 + 0𝑠 and 𝑠 = 0𝑠 + 1𝑠 are in 𝐻. Since 𝑑 ∈ 𝐻 we 

can write 

𝑑 = 𝑛𝑟 + 𝑚𝑠 

For some integers 𝑛 and 𝑚. We see every integer 

dividing both 𝑟 and 𝑠 divides the right hand side of the 

equation, and hence must be a divisor of 𝑑 also. Thus, 𝑑 

must be the largest number dividing both 𝑟 and 𝑠. 

Example 2. Find the 𝐺𝐶𝐷 of 24 and 54. 

The positive dividers of 24 are1, 2, 3, 4, 6, 8, 12, 
and 24. The positive dividers of 54 are 

1, 2, 3, 6, 9, 18, 27 and 54. The greatest common divisor 

is 6.  6 = 1(54) + (−2)24.  
A different result of congruencies in number 

theory is the Chinese remainder theorem. The Chinese 

remainder theorem determines the number 𝑛 that when 

divided by some given divisors leave given remainders. 

Theorem 2. The Chinese remainder theorem. The 

system of congruencies. 

𝑥 ≡ 𝑎𝑖(𝑚𝑜𝑑 𝑚𝑖), 𝑖 = 1, 2, 3, … , 𝑘 

where (𝑚𝑖 , 𝑚𝑗) = 1 if 𝑖 ≠ 𝑗, has a unique solution 

modulo 𝑚1𝑚2 𝑚3 … 𝑚𝑘 . 
Proof:  We first show by induction, that system (1) has a 

solution. The result is obvious when 𝑘 = 1. Let us 

consider the case 𝑘 = 2. If 𝑥𝑎1(𝑚𝑜𝑑 𝑚1), then 𝑥 =
𝑎1 + 𝑘1𝑚1for some 𝑘1. If in addition 𝑥 ≡
𝑎2(𝑚𝑜𝑑 𝑚2), then 

𝑎1 + 𝑘1𝑚2 ≡ 𝑎2(𝑚𝑜𝑑 𝑚2) 

or 

𝑘1𝑚1 ≡ 𝑎2 − 𝑎1(𝑚𝑜𝑑 𝑚2). 
Because (𝑚2𝑚1) = 1, we know that this congruence, 

with 𝑘1 as the unknown, has a unique solution modulo 

𝑚2. Call it 𝑡. Then 𝑘1 = 𝑡 + 𝑘2𝑚2 for some 𝑘2, and 

𝑥 ≡ 𝑎𝑖(𝑚𝑜𝑑 𝑚𝑖), 𝑖 = 1, 2, 3, … , 𝑟 − 1. 
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But the system 

 

𝑥 ≡ 𝑠(𝑚𝑜𝑑 𝑚1𝑚2𝑚3 … 𝑚𝑟−1),  
 

𝑥 ≡ 𝑎𝑟(𝑚𝑜𝑑 𝑚𝑟) 

 

Has a solution modulo the product of the moduli, just as 

in the case 𝑘 = 2, because (𝑚1𝑚2𝑚3 … 𝑚𝑘−1, 𝑚𝑘) = 1. 

This statement is true because no prime that divides 𝑚𝑖 . 
The solution is unique. If 𝑟 and 𝑠 are both solutions to 

the system then 𝑟 ≡ 𝑠 ≡ 𝑎𝑖(𝑚𝑜𝑑 𝑚𝑖), 𝑖 =

1, 2, 3, … , 𝑘. So 𝑚𝑖│(𝑟 − 𝑠), 𝑖 = 1, 2, … , 𝑘.Thus 𝑟 − 𝑠 is 

a common multiple of 𝑚1𝑚2𝑚3 … 𝑚𝑘, and because the 

moduli are relatively prime in pairs, we have 

𝑚1𝑚2𝑚3 … 𝑚𝑘│(𝑟 − 𝑠). Since 𝑟 and 𝑠 are least 

residuals modulo 𝑚1𝑚2𝑚3 … 𝑚𝑘 

−𝑚1𝑚2𝑚3 … 𝑚𝑘 < 𝑟 − 𝑠 < 𝑚1𝑚2𝑚3 … 𝑚𝑘 

Hence,  

𝑟 − 𝑠 = 0.                                                                                                                                 

 

III. APPLICATION OF CYCLIC 

GROUPS IN BELL RINGING 
 

Method ringing, known as scientific ringing, is 

the practice of ringing the series of bells as a series of 

permutations. A permutation 𝑓: 1, 2, … , 𝑛 ⟶ 1, 2, … , 𝑛, 

where the domain numbers represent positions and the 

range numbers represent bells. 𝑓(1) would ring the bell 

first and bell 𝑓(𝑛) last. The number of bells 𝑛 has 𝑛! 
possible changes. 

 

 
Figure 2: Plain Bob Minimus permutation 

 

The bell ringer cannot choose to ring permutations in 

any order because some of the bells continue to ring up 

to 2 seconds. Therefore, no bell must be rung twice in a 

row. These permutations can all be played until it 

eventually returns to the original pattern of bells. 

A common permutation pattern for four bells is 

the Plain Bob Minimus permutation (Figure 2). The 

Plain Bob pattern switches the first two bells then the 

second set of bells. They would start the bell ringing 

with 1234. The first bell would go to the second position 

and third would go to the fourth; therefore, the next bell 

combination would be 2143. The next bell switch would 

be the two middle bells. Therefore, the bell 2143 would 

turn to 2413. The bell ringers would repeat this pattern 

of switching the first two and second two, followed by 

switching the middle until about 1 3⁄  of the way through 

the permutations. At the pattern 1324, we cannot switch 

the middle two. If we switched the middle two, we 

would get back to 1234. Therefore, the bell ringers 

figured out to switch the last two bells every 8 

combinations. Then after 24 moves (4!) we get back to 

the bell combination of 1234. Since we made rotations 

of the bells and generated every combination of the set 

and are now back at the beginning, we can say that the 

bell ringing pattern is cyclic [4]. 

 

 
Figure 3: Permutation of 4 bells 

 

IV. CLOCK ARITHMETIC AND 

MODULAR SYSTEM 
 

One of the fantastic usage of the cyclic group is 

in the 12-hour clock system, which is based on an 

ordinary clock face, except 12 is replace with 0 and only 

a single hand, say the hour hand, is used. See figure 1. 

 

 
Figure 1 
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The clock face yields the finite set 
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}. As on operation for this 

clock system, addition is defined as follows: add by 

moving the hour hand in a clockwise direction. For 

example, to add 5 and  2 on a clock, first move the hour 

hand to  5, as in figure 2. Then, to add  2, move the hour 

hand  2 more hours in a clockwise direction. The hand 

stop at  7, so 

5 + 2 = 7. 
See figure 2 for more clarification. 

 

 
Plus 2 hours 

5 + 2 = 7 

Figure 2 

 

This result agrees with traditional addition. 

However, the sum of tow numbers from the 12- hour 

clock system is not always what might be expected, as 

the following example shows.  

Example 1. Find each sum in 12-hour clock arithmetic. 
(𝑎)    8 + 9 

Move the hour hand to  8, as in figure 3. Then 

advance the hand clockwise through  9 more hours. It 

stop at  5, so 

8 + 9 = 5. 
 

 
Plus 9 hours 

8 + 9 = 5 

Figure 3 

 

(𝑏)    11 + 3  

        Proceed as shown in figure 4. Check that 

11 + 3 = 2. 

 
Plus 3 hours  

11 + 3 = 2 

Figure 4 

 

Since there are many infinitely whole numbers, 

it is not possible to write a complete table of addition 

facts for that set. Such a table, to show the sum of every 

possible pair of whole numbers, would have an infinite 

number of rows and columns, making it impossible to 

construct.  

On the other hand, the 12-hour clock system 

uses only the whole numbers 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 

and 11. A table of all possible sums for this system 

requires only 12 rows and 12 columns. The 12-hour 

clock addition table is shown in table 1. Since the 12-

hour system is built upon a finite set, it is called a finite 

mathematical system. 

 

Table 1:  12-Hour Clock Addition 

 
 

Example 2. Use the 12-hour clock addition table to find 

each sum. 
(𝑎)   7 + 11 

Find 7 on the left of the addition table and 11 across the 

top. The intersection of the row headed 7 and the column 

headed 11 gives the number 6. Thus, 7 + 11 = 6. 
(𝑏)   Also from the table, 11 + 1 = 0. 

So far, our 12-hour clock system consists or the 

set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}, together with the 

operation of clock addition. Next we will check wither 

this system has the closure, commutative, associative, 

identity, and inverses properties. These properties 

described in the section 1 of the article. 
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Table 1 shows that the sum of tow numbers on 

a clock face is always a number on the clock face. That 

is, if 𝑎 and 𝑏 are any clock numbers in the set of the 

system, then 𝑎 + 𝑏 is also in the set of the system. The 

system has the closure property. (the set of the system is 

closed under clock addition.) 

Notice also in this system, 5 + 9 and 9 + 5 

both yield 2. Also 7 + 11 and 11 + 7 both yield 6. The 

order in which elements are added does not seem to 

matter. In fact, you can see in Table 1 that the part of the 

table above the colored diagonal line is a mirror image 

of the part below diagonal line. This shows that, for any 

clock numbers 𝑎 and 𝑏, 𝑎 + 𝑏 = 𝑏 + 𝑎. The system has 

the commutative property. 

Modular systems: We now expand this idea of clock 

arithmetic to modular system in general. Recall that 12-

hour clock arithmetic was set of so that answers were 

always whole numbers less than 12. For example, 8 +
6 = 2. The traditional sum, 8 + 6 = 14, reflects the fact 

that moving the clock hand forward 8 hours from 0, and 

then forward another 6 hours, amounts to moving it 

forward 14 hours total. But since the final position of the 

clock is at 2, we see that 14 and 2 are, in a sense, 

equivalent. More formally we say that 14 and 2 are 

congruent modulo 12 (or congruent mod 12), which is 

written  

14 ≡ 2(𝑚𝑜𝑑 12) 

By observing clock hand movements, you can 

also see that, for example,  

26 ≡ 2(𝑚𝑜 12),   38 ≡ 2(𝑚𝑜𝑑 12),       and so on. 

In each case, the congruence is true because the 

difference of the tow congruent numbers is a multiple of 

12:  
14 − 2 = 12 = 1 × 12,   26 − 2 = 24 = 2 × 12,   38 −

2 = 36 = 3 × 12. [1] 

       

V. APPLICATION OF CYCLIC GROUP 

IN CHAOS THEORY 
        

Chaos theory involves examining deterministic 

behavior that can fluctuate so unpredictability that it 

looks random. Chaos is the belief is that tiny changes to 

the starting conditions can result in wildly different 

behavior. Edward Lorenz was studying computer models 

and was astonished to find out that if he ran the model 

half way through the circulation then restart the 

computer program from there, would produce 

dramatically different results after the restart. The 

computer completed a large number of calculations and 

the tiny differences amplified into a huge discrepancy. 

Lorenz called this the Butterfly Effect; he told the 

audience that because of the sensitivity of the weather to 

tiny changes, a butterfly flapping its wings in the United 

States could theoretically cause a typhoon in China. This 

is why weather predictions are only accurate for a few 

days. 

 
Figure 5: coin objects that can be moved around to 

produce a cyclic group 

 

Even though probability may seem chaotic it 

can produce the same event consistently. An example 

would be placing 5 different color coins in a circle on a 

table (Figure 5), if we move a coin clockwise we would 

repeatedly move coins along and the first coin would 

visit all of the other coins. Imagine a bag containing 

instructions to move coins 1 through 5 along, or to leave 

them alone. As long as we do not pick the choice where 

we leave them as they are instruction we will eventually 

wind up with the same arrangement of the coins. What 

makes this work is that we have a prime number of 

tokens. As the number of coins increases the chance of 

picking leaving the coins alone goes down. With around 

997 coins the chance is 1 in 1000. There for most likely 

we will get a move that produces a cyclic group [4]. 

 

VI. APPLICATION OF CYCLIC 

GROUPS IN LINEAR CODES 
 

 Verbal messages are normally converted to 

numerical form to electronic transmission. When 

computers are involved, this is usually done by means of 

a binary code, in which messages are expressed as 

strings of 0′s and 1′s. Such messages are easily handled 

because the internal processing units on most computers 

represent letters, numerals, and symbols in this way. The 

discussion her deals with such binary codes. Throughout 

this Paper we assume that we have a binary symmetric 

channel, meaning that: 

1. The probability of a 0 being incorrectly received as 

a 1 is the same as the probability of a 1 being incorrectly 

received as a 0;  
2. The probability of a transmission error in a single 

digit is less thane 5; and 

3. Multiple transmission errors occur independently. 

 Here is a simple example that give a flavor of 

the paper. 

Example 1. suppose that the message to be sent is a 

single digit, either 1 or 0. The message might be, for 

example, a signal to tell a satellite whether or not to orbit 

distant planet. With a signal-digit message, the receiver 

has no way to tell if on error has occurred. But suppose 

instead that a four-digit message is sent: 1111 for 1 or 

0000 for 0. Then this code can correct single errors. For 

instance, if 1101 is received, then it seems likely that a 
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single error has been made and that 1111 is the correct 

message. It is possible, of course, that three errors were 

made and the correct message is 0000. But this is much 

less likely than a single error. The code can detect 

double errors, but not correct them. For instance, if 1100 

is received, then two errors probably have made, but the 

intended message isn’t clear. The numerical message 

words (0 and 1) are translated into codewords (0000 and 

1111). Only codeworeds are transmitted, but in the 

example any four-digit string of 0’s and 1’s is possible 

received word. 

We can develop a usable definition of code in 

general case by considering the preceding example from 

a different viewpoint. If we of the message words 0 and 

1 as elements of 𝑍2, then the received words can be 

considered as element of the additive group 𝑍2 × 𝑍2 ×
𝑍2 × 𝑍2 by writing (1, 0, 1, 1), for instance, as 1010 or 

(0, 0, 0 ,0) as 0000. Addition in this group is performed 

coordinate wise; for example, 1010 + 1011 =
0001(remember 1 + 1 = 0 in 𝑍2). The set of codewords 

𝐶 = {0000, 1111} closed under addition, so it is a 

subgroup of  𝑍2 × 𝑍2 × 𝑍2 × 𝑍2. For each integer 𝑛, 𝐵𝑛 

denotes the Cartesian product. 

 𝑍2 × 𝑍2 × 𝑍2 × … × 𝑍2 of 𝑛 copies of 𝑍2.With 

coordinate wise addition, 𝐵𝑛is an additive group of order 

2𝑛. The  elements of 𝐵𝑛will be written as a strings of 0’s 

and 1’s of length 𝑛. If 0 < 𝑘 < 𝑛, then an (𝑛, 𝑘) binary 

linear code consist of a subgroup 𝐶 of 𝐵𝑛of order 2𝑘. 

For convenience, 𝐶 are called codworeds. Only 

codewords are transmitted, but any element of 𝐵𝑛can be 

received word. 

In the preceding example, 𝐶 = {0000, 1111} is 

a (4, 1) code since 𝐶 is a subgroup of order 21 of the 

group 𝐵4 = 𝑍2 × 𝑍2 × 𝑍2 × 𝑍2 of order 24 [6]. 

      If 𝑛 ≥ 2, let 𝐵𝑛 = 𝑍2 × 𝑍2 × 𝑍2 × … × 𝑍2 

Denote the direct product of 𝑛 copies of the 

(additive abelian) group 𝑍2 = {0, 1}. The elements of 

𝐵𝑛are called words of length n and, for convenience, we 

write them as strings of 0’s and 1’s rather than as 𝑛 -

tuples. Thus, 110101 in 𝐵6 stands for (1, 1, 0, 1, 0, 1). 
We call the individual 0’s and 1’s the bits of the word 

(an abbreviation for binary digits). A subset 𝐶 of 𝐵𝑛with 

|𝐶| ≥ 2, is called an 𝑛 -binary code (or simply an 𝑛-

code). The words in 𝐶 are called code words. We 

describe the general coding process in the diagram. 

A set of words, called message words, is given 

in 𝐵𝑘. They are paired with a set 𝐶 of longer words in 

𝐵𝑛, 𝑛 ≥ 𝑘, which will be transmitted. Thus 𝐶 is an 𝑛-

code, and the process of passing from a message to the 

corresponding code word is called encoding. Only code 

words are transmitted but, as some bits may be altered 

during transmission, words other than code words may 

be received. The sole purpose of the encoding process is 

to enable the receiver to detect errors and, if there are not 

too many, to correct them. The encoding and 

transmission processes are usually quite simple. The 

message words in 𝐵𝑘 are paired with code words in 𝐵𝑛 

in such a way that passing back· and forth is easy [8]. 

Example 2. Consider the code 𝐶 =
{(1010), ( 1110), (0011)} in 𝑍2

4. Suppose a codeword 

in 𝐶 is transmitted and we receive the vector 𝑟1 =
(1110). A quick search of 𝐶 reveals that 𝐶 = (1110) is 

the codeword from which 𝑟1 differs in the fewest 

positions. Hence, we would correct 𝑟1 to 𝑐, and assume 

that the error in 𝑟1 is 𝑒 = 𝑟1 − 𝑐 = (1000). Now, 

suppose a codeword in 𝐶 is transmitted and we receive 

the vector 𝑟2 = (0010). Since two of the codewords in 𝐶 

differ from 𝑟2 in only one position, we cannot uniquely 

correct 𝑟2 using the nearest neighbor policy. Therefore, 

in this code 𝐶, we are not guaranteed to be able to 

uniquely correct a received vector in 𝑍2
4 even if the 

received vector contains only a single error [5]. 

 

VII. CONCLUSION 
   

Human minds are designed for pattern 

recognition and we can find algebraic structures in 

common objects and things around us. Cyclic groups are 

the simplest groups that have an object that can generate 

the whole set. The object can generate the set by 

addition, multiplication, or rotations. Cyclic groups are 

not only common in pure mathematics, but also in 

patterns, shapes, music, and chaos. Cyclic groups are an 

imperative part of number theory used with the Chinese 

remainder theorem and Fermat’s theorem. Knowing if a 

group is cyclic could help determine if there can be a 

way to write a group as a simple circuit. This circuit 

could simplify the process of generation to discover the 

most efficient way to generate the object for use of 

future applications in mathematics and elsewhere. In this 

paper we have worked on deferent applications of the 
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cyclic groups, such that the application of cyclic group 

in number theory, bell ringing, clock arithmetic and 

modular system, chaos theory and linear codes. In the 

presented research work we clarified all the matters in 

very simple ways and useful examples.  
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