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ABSTRACT  

 
This article presents a brand-new approximation analytical technique we refer to as the reconstruction of variational 

iteration method. For the goal of solving fractional biological population option pricing equations, this methodology was created. 

In certain circumstances, you may actually use the well-known Mittag-Leffer function to get an explicit response. The usage of 

the three examples below demonstrates the precision and effectiveness of the suggested method. The results show that the RVIM 

is not only quite straightforward but also very successful at resolving non-linear problems. 

 

Keywords- Biological Population, Variational Iteration Method, Differential Equations. 

 

 

 

I. INTRODUCTION 
 

Over the last thirty years or more, fractional 

differential equations have grown in significance and 

appeal, mostly as a result of their multiple, apparently 

unrelated applications in the disciplines of science and 

engineering. For instance, the fluid-dynamic traffic 

model using fractional derivatives may address the 

inadequacy resulting from the assumption of continuous 

traffic flow. The nonlinear oscillation of earthquake can 

also be described with fractional derivatives. 

Additionally, many chemical processes, mathematical 

biology, and several other physics and engineering 

issues are modeled using fractional differential 

equations,[1]–[10]. 

Since most physical systems are nonlinear in 

nature, nonlinear issues are crucial for engineers, 

physicists, and mathematicians. The nonlinear equations, 

on the other hand, are challenging to solve and produce 

intriguing phenomena, such as chaos. In order to fully 

understand nonlinear physical events, it is crucial to 

investigate the precise solutions of nonlinear evolution 

equations. Recently, a wide variety of alternative 

techniques have been utilized to solve physical-

interesting nonlinear and linear differential equations. 

Linear and nonlinear problems have been solved using 

the Adomian decomposition method (ADM) [11], [12], 

the homotopy perturbation method (HPM) [13]-[16], the 

variational iteration method (VIM)[16]-[21], and other 

techniques. Due to the challenges posed by the nonlinear 

variables, the Laplace transform is completely incapable 

of addressing nonlinear equations.  Numerous strategies, 

including the Laplace decomposition method (LDM) 

[22]–[26] and the homotopy perturbation transform 

technique (HPTM) [27], have been put forward lately to 

cope with these non-linearities. A very efficient 

approach known as the homotopy analysis transform 

method (VIM) has just recently been developed by 

combining the homotopy analysis method (HAM) with 

the well-known Laplace transform [28], [29]. The 

variatoinal iteration technique (VIM) is used in this 

study to handle a variety of nonlinear issues. 

The nonlinear fractional-order biological 

population model using the following formula is 

examined in this paper: 

   
𝜕𝛼𝑢

𝜕𝑡𝛼 =
𝜕2(𝑢2)

𝜕𝑥2 +
𝜕2(𝑢2)

𝜕𝑦2 + 𝑓(𝑢)         …(1) 
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with the given initial condition 

 

𝑢(𝑥. 𝑦. 0) = 𝑓0(𝑥. 𝑦) 

 

where u stands for population density and f for 

the supply of people as a result of births and deaths. This 

nonlinear fractional biological population model is 

created by substituting a fractional derivative of order 

with 011 $ for the first time derivative term in the 

associated biological population model. The derivatives 

are interpreted in the sense of Caputo. A parameter 

indicating the order of the fractional derivative is 

included in the general response expression and may be 

changed to provide different replies. The standard 

biological population model replaces the fractional 

biological population model when = 1 occurs. Other 

scholars have already investigated certain features of this 

concept [30]. 

In this research, we also solve the fractional 

biological population models using the Reconstruction 

of Variational Iteration Method (RVIM). To solve 

nonlinear fractional biological population models, the 

current work aims to adapt the Variational Iteration 

Method (VIM). 

1.1. Preliminaries and definitions 

In this section, we present some basic 

definitions and preliminaries  in fractional calculus, 

Riemann-Liouville fractional integral of order α. 
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one useful function for fractional calculus is 

Mittag-Leffler function. the standard definition of te 

Mittag-Leffler function 𝐸𝛼,𝛽(𝑧) is as follows:  

 

𝐸𝛼,𝛽(𝑧) = ∑

∞

𝑘=0

𝑧𝑘

Γ(𝛼𝑘 + 𝛽)
    ,         

 

𝛼, 𝛽 ∈ ℂ, Re(𝛼) > 0.                …(3) 

 

Although there are numerous ways to define 

fractional derivatives, in this study the most favorable 

definition is Capotu fraction from the order 𝛼 is defined 

as follows. 

 

 0D𝑡
𝛼𝑓(𝑡) =

1

Γ(𝑛−𝛼)
∫

𝑡

0

𝑓(𝑛)(𝜏)

(𝑡−𝜏)𝛼−𝑛+1 d𝜏    …(4) 

 

The fractional integral of order 𝛼 of function 

𝑓(𝑡) = (𝑡 − 𝑎)𝑣 is as follows 

 

 𝑎𝐷𝑡
−𝛼((𝑡 − 𝑎)𝑣) =

Γ(1+𝑣)

Γ(1+𝑣+𝛼)
(𝑡 − 𝑣)𝑣+𝛼     …(5) 

 

II. RECONSTRUCTION OF 

VARIATIONAL ITERATION 

METHOD 

 

In this section we introduce a approximate 

analytical method to solve Biological population model 

(1) for fractional order 𝛼 (1 ≤ 𝛼 ≤ 2). 

Hesameddini and Latifzadeh [30] presented the 

Reconstruction of Variational Iteration Method (RVIM) 

for differential equations of integer order. Here, we 

expand this approach to solving (1) Consider the 

biological population equation in its generic version, 

which looks like this. 

 

𝜕𝛼𝑢(𝑥, 𝑦, 𝑡)

𝜕𝑡𝛼
= 𝑔 (𝑡, 𝑥, 𝑦, 𝑢,

𝜕𝑢

𝜕𝑥
,
𝜕𝑢

𝜕𝑦
,

𝜕2𝑢

𝜕𝑥𝜕𝑦
,
𝜕2𝑢

𝜕𝑥2
,
𝜕2𝑢

𝜕𝑦2
), 

𝑢(𝑥, 𝑦, 0) = 𝑓0(𝑥, 𝑦)        …(6) 

 

where the operator 
𝜕𝛼

𝜕𝑡𝛼 is the Caputo fractional 

derivatives and 𝑚 − 1 ≤ 𝛼 < 𝑚 . By taking Laplas 

Transform from both side of equation (6) , with respect 

to the independent variable 𝑡 and using the homogeneous 

initial condition, we get 

 

𝑠𝛼ℒ{𝑢(𝑥, 𝑦, 𝑡)} − 𝑠𝛼−1𝑢(𝑥, 𝑦, 0)

= ℒ {𝑔 (𝑡, 𝑥, 𝑦, 𝑢,
𝜕𝑢

𝜕𝑥
,
𝜕𝑢

𝜕𝑦
,

𝜕2𝑢

𝜕𝑥𝜕𝑦
,
𝜕2𝑢

𝜕𝑥2
,
𝜕2𝑢

𝜕𝑦2
)} 

 

Therefore 

 

ℒ{𝑢(𝑥, 𝑦, 𝑡)} =
1

𝑠
𝑓0(𝑥, 𝑦, 𝑡) +

1

𝑠𝛼 𝐺 (𝑠, 𝑥, 𝑦, 𝑢,
𝜕𝑢

𝜕𝑥
,

𝜕𝑢

𝜕𝑦
,

𝜕2𝑢

𝜕𝑥𝜕𝑦
,

𝜕2𝑢

𝜕𝑥2 ,
𝜕2𝑢

𝜕𝑦2)          ...(7) 

 

Now by applying the inverse Laplace transform 

to both side of equation (7), and using the convolution 

theorem we get  

 

𝑢(𝑥, 𝑦, 𝑡) = 𝑓0(𝑥, 𝑦, 𝑡) + ℒ−1 {
1

𝑠𝛼
𝐺 (𝑠, 𝑥, 𝑦, 𝑢,

𝜕𝑢

𝜕𝑥
,
𝜕𝑢

𝜕𝑦
,

𝜕2𝑢

𝜕𝑥𝜕𝑦
,
𝜕2𝑢

𝜕𝑥2
,
𝜕2𝑢

𝜕𝑦2
)}

= 𝑓0(𝑥, 𝑦, 𝑡) +
𝑡𝛼−1

Γ(𝛼)
∗ 𝑔 (𝑡, 𝑥, 𝑦, 𝑢,

𝜕𝑢

𝜕𝑥
,
𝜕𝑢

𝜕𝑦
,

𝜕2𝑢

𝜕𝑥𝜕𝑦
,
𝜕2𝑢

𝜕𝑥2
,
𝜕2𝑢

𝜕𝑦2
)

= 𝑓0(𝑥, 𝑦, 𝑡) +
1

Γ(𝛼)
∫

𝑡

0

(𝑡 − 𝜉)𝛼−1𝑔 (𝑡, 𝑥, 𝑦, 𝑢,
𝜕𝑢

𝜕𝑥
,
𝜕𝑢

𝜕𝑦
,

𝜕2𝑢

𝜕𝑥𝜕𝑦
,
𝜕2𝑢

𝜕𝑥2
,
𝜕2𝑢

𝜕𝑦2
) d𝜉

 

  

according to [16] by imposing to initial 

condition to obtain the solution of equation (6) , we 

construct an iteration formula as follows 

 
𝑢𝑛+1(𝑥, 𝑦, 𝑡) = 𝑓0(𝑥, 𝑦, 𝑡) +

1

Γ(𝛼)
∫

𝑡

0
(𝑡 − 𝜉)𝛼−1𝑔 (𝑡, 𝑥, 𝑦, 𝑢,

𝜕𝑢

𝜕𝑥
,

𝜕𝑢

𝜕𝑦
,

𝜕2𝑢

𝜕𝑥𝜕𝑦
,

𝜕2𝑢

𝜕𝑥2
,

𝜕2𝑢

𝜕𝑦2
) d𝜉 

…8 

 

where 𝑓(0, 𝑥, 𝑦, 𝑡)is initial solution. By the 

above iteration each term will be determined by the 

previous term in the approximation of iteration formula 

can be entirely evaluated. Consequently the solution may 

be written as  
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 𝑢(𝑥, 𝑦, 𝑡) = lim
𝑛→∞

𝑢𝑛(𝑥, 𝑦, 𝑡). 

 

III. EXAMPLES 
 

 Here, we apply the suggested approach to a few 

biological population models. The Mittag-Leffler 

function emerges in the resolution of these situations, as 

we will see. 

Example 3.1: 

Consider the following fractional Biological 

population option pricing equations.  

 

 
𝜕𝛼𝑢

𝜕𝑡𝛼 =
𝜕2(𝑢2)

𝜕𝑥2 +
𝜕2(𝑢2)

𝜕𝑦2 + 𝑢(1 − 𝑟𝑢),  …(9) 

 

with the initial condition  

 

 𝑢(𝑥, 𝑦, 0) = exp [
1

2
√

𝑟

2
(𝑥 + 𝑦)]. …(10) 

  

Applying the RVIM method to this problem we 

option the following recursive formula  

 
𝑢𝑛+1(𝑥, 𝑦, 𝑡) = 𝑓0(𝑥, 𝑦, 𝑡) +

1

Γ(𝛼)
∫

𝑡

0
(𝑡 − 𝜉)𝛼−1𝑔 (𝑡, 𝑥, 𝑦, 𝑢,

𝜕𝑢

𝜕𝑥
,

𝜕𝑢

𝜕𝑦
,

𝜕2𝑢

𝜕𝑥𝜕𝑦
,

𝜕2𝑢

𝜕𝑥2
,

𝜕2𝑢

𝜕𝑦2
) d𝜉

 …(11) 

 where 

 

 𝑔 (𝑡, 𝑥, 𝑦, 𝑢,
𝜕𝑢

𝜕𝑥
,

𝜕𝑢

𝜕𝑦
,

𝜕2𝑢

𝜕𝑥𝜕𝑦
,

𝜕2𝑢

𝜕𝑥2 ,
𝜕2𝑢

𝜕𝑦2) =
𝜕2(𝑢2)

𝜕𝑥2 +

𝜕2(𝑢2)

𝜕𝑦2 + 𝑢(1 − 𝑟𝑢), 

 

 𝑓0(𝑥, 𝑦, 𝑡) = exp [
1

2
√

𝑟

2
(𝑥 + 𝑦)] 

 

Now, the above successive approximation 

yields  

 

𝑢𝑛+1(𝑥, 𝑦, 𝑡) = 𝑓0(𝑥, 𝑦, 𝑡) +
1

Γ(𝛼)
∫

𝑡

0

(𝑡

− 𝜉)𝛼−1 (
𝜕2(𝑢𝑛

2)

𝜕𝑥2
+

𝜕2(𝑢𝑛
2)

𝜕𝑦2
+ (𝑢𝑛 − 𝑟𝑢𝑛

2)) d𝜉 

 

𝑢1(𝑥, 𝑦, 𝑡) = exp [
1

2
√

𝑟

2
(𝑥 + 𝑦)] +

1

Γ(𝛼)
∫

𝑡

0

(𝑡 − 𝜉)𝛼−1 (𝑟exp [√
𝑟

2
(𝑥 + 𝑦)] + exp [

1

2
√

𝑟

2
(𝑥 + 𝑦)] − 𝑟exp [√

𝑟

2
(𝑥 + 𝑦)]) d𝜉

 

 

𝑢1(𝑥, 𝑦, 𝑡) = exp [
1

2
√

𝑟

2
(𝑥 + 𝑦)] +

1

Γ(𝛼)
∫

𝑡

0
(𝑡 − 𝜉)𝛼−1exp [

1

2
√

𝑟

2
(𝑥 + 𝑦)] d𝜉

= exp [
1

2
√

𝑟

2
(𝑥 + 𝑦)] + exp [

1

2
√

𝑟

2
(𝑥 + 𝑦)]

1

Γ(𝛼)
∫

𝑡

0
(𝑡 − 𝜉)𝛼−1d𝜉

= exp [
1

2
√

𝑟

2
(𝑥 + 𝑦)] + exp [

1

2
√

𝑟

2
(𝑥 + 𝑦)]

𝑡𝛼

Γ(𝛼+1)

= exp [
1

2
√

𝑟

2
(𝑥 + 𝑦)] [1 +

𝑡𝛼

Γ(𝛼+1)
]

 

  

and  

𝑢2(𝑥, 𝑦, 𝑡) = 𝑢1(𝑥, 𝑦, 𝑡) +
1

Γ(𝛼)
∫

𝑡

0

(𝑡 − 𝜉)𝛼−1 (
𝜕2(𝑢1

2)

𝜕𝑥2
+

𝜕2(𝑢1
2)

𝜕𝑦2
+ (𝑢1 − 𝑟𝑢1

2)) d𝜉

= exp [
1

2
√

𝑟

2
(𝑥 + 𝑦)] [1 +

𝑡𝛼

Γ(𝛼 + 1)
+

𝑡2𝛼

Γ(𝛼 + 1)
]

 

  

finally we get 

  

𝑢𝑛(𝑥, 𝑦, 𝑡) = exp [
1

2
√

𝑟

2
(𝑥 + 𝑦)] [1 +

𝑡𝛼

Γ(𝛼 + 1)
+

𝑡2𝛼

Γ(𝛼 + 1)
+ ⋯ +

𝑡𝑛𝛼

Γ(𝑛𝛼 + 1)
] 

 

Therefore by using the definition of Mittag-

leffler function in one parameter, the solution of the 

problem is given by  

 

𝑢(𝑥, 𝑦, 𝑡) = lim
𝑛→∞

𝑢𝑛(𝑥, 𝑦, 𝑡) = exp [
1

2
√

𝑟

2
(𝑥 + 𝑦)] ∑∞

𝑚=0
𝑡𝑚𝛼

Γ(𝑚𝛼+1)

= exp [
1

2
√

𝑟

2
(𝑥 + 𝑦)] 𝐸𝛼(𝑡𝛼)

 

  

if we put 𝛼 = 1 we option the exact solution 

 

𝑢(𝑥, 𝑦, 𝑡) = exp [
1

2
√

𝑟

2
(𝑥 + 𝑦)] 𝑒𝑡 = exp [

1

2
√

𝑟

2
(𝑥 + 𝑦) + 𝑡] 

 

which is an exact solution of the given classical 

Biological Population equation (9).  

Example 3.2: 

Consider the following generalized biological 

population model:  

  

 
𝜕𝛼𝑢

𝜕𝑡𝛼 =
𝜕2(𝑢2)

𝜕𝑥2 +
𝜕2(𝑢2)

𝜕𝑦2 + 𝑘𝑢, …(12) 

  

with the initial condition  

 

 𝑢(𝑥, 𝑦, 0) = √𝑥𝑦, …(13) 

 

as in previous example we apply the RVIM 

method to this problem. corresponding to equation (11) 

recursive formula is obtained as follows:  

 
𝑢𝑛+1(𝑥, 𝑦, 𝑡) = 𝑓0(𝑥, 𝑦, 𝑡) +

1

Γ(𝛼)
∫

𝑡

0
(𝑡 − 𝜉)𝛼−1𝑔 (𝑡, 𝑥, 𝑦, 𝑢,

𝜕𝑢

𝜕𝑥
,

𝜕𝑢

𝜕𝑦
,

𝜕2𝑢

𝜕𝑥𝜕𝑦
,

𝜕2𝑢

𝜕𝑥2
,

𝜕2𝑢

𝜕𝑦2
) d𝜉

 

where 

 

𝑔 (𝑡, 𝑥, 𝑦, 𝑢,
𝜕𝑢

𝜕𝑥
,

𝜕𝑢

𝜕𝑦
,

𝜕2𝑢

𝜕𝑥𝜕𝑦
,

𝜕2𝑢

𝜕𝑥2 ,
𝜕2𝑢

𝜕𝑦2
) =

𝜕2(𝑢2)

𝜕𝑥2 +
𝜕2(𝑢2)

𝜕𝑦2 + 𝑘𝑢.

𝑢0(𝑥, 𝑦, 𝑡) = √𝑥, 𝑦
 

  

The approximation are obtained as  

 
𝑢1(𝑥, 𝑦, 𝑡) = 𝑘√𝑥, 𝑦

𝑡𝛼

Γ(𝛼+1)

𝑢2(𝑥, 𝑦, 𝑡) = 𝑘√𝑥𝑦
𝑡𝛼

Γ(𝛼+1)
+ 𝑘2√𝑥𝑦

𝑡2𝛼

Γ(2𝛼+1)

𝑢3(𝑥, 𝑦, 𝑡) = 𝑘√𝑥𝑦
𝑡𝛼

Γ(𝛼+1)
+ 𝑘2√𝑥𝑦

𝑡2𝛼

Γ(2𝛼+1)
+ 𝑘3√𝑥𝑦

𝑡3𝛼

Γ(3𝛼+1)

⋮

𝑢𝑛(𝑥, 𝑦, 𝑡) = 𝑘√𝑥𝑦
𝑡𝛼

Γ(𝛼+1)
+ 𝑘2√𝑥𝑦

𝑡2𝛼

Γ(2𝛼+1)
+ 𝑘3√𝑥𝑦

𝑡3𝛼

Γ(3𝛼+1)
+ ⋯ + 𝑘𝑛√𝑥𝑦

𝑡𝑛𝛼

Γ(𝑛𝛼+1)

 

 

and so on.  
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𝑢(𝑥, 𝑦, 𝑡) = lim
𝑛→∞

𝑢𝑛(𝑥, 𝑦, 𝑡) =

√𝑥𝑦 ∑∞
𝑚=0

(𝑘𝑡𝛼)𝑚

Γ(𝑚𝛼+1)
√𝑥𝑦𝐸𝛼(𝑘𝑡𝛼). …(14) 

 

if we put 𝛼 = 1 , we obtain the exact solution:  

 

 𝑢(𝑥, 𝑦, 𝑡) = √𝑥𝑦𝑒𝑘𝑡 , …(15) 

  

Example 3.3: 

 

Consider the following generalized biological 

population model:  

  

 
𝜕𝛼𝑢

𝜕𝑡𝛼 =
𝜕2(𝑢2)

𝜕𝑥2 +
𝜕2(𝑢2)

𝜕𝑦2 + 𝑢, …(16) 

  

with the initial condition  

 

 𝑢(𝑥, 𝑦, 0) = √sin𝑥sinh𝑦. …(17) 

 

By applying the RVIM method to this problem. 

corresponding to recursive equation (16) 

 

 
𝑢𝑛+1(𝑥, 𝑦, 𝑡) = 𝑓0(𝑥, 𝑦, 𝑡) +

1

Γ(𝛼)
∫

𝑡

0
(𝑡 − 𝜉)𝛼−1𝑔 (𝑡, 𝑥, 𝑦, 𝑢,

𝜕𝑢

𝜕𝑥
,

𝜕𝑢

𝜕𝑦
,

𝜕2𝑢

𝜕𝑥𝜕𝑦
,

𝜕2𝑢

𝜕𝑥2
,

𝜕2𝑢

𝜕𝑦2
) d𝜉

 

  

where  

 

𝑔 (𝑡, 𝑥, 𝑦, 𝑢,
𝜕𝑢

𝜕𝑥
,

𝜕𝑢

𝜕𝑦
,

𝜕2𝑢

𝜕𝑥𝜕𝑦
,

𝜕2𝑢

𝜕𝑥2
,

𝜕2𝑢

𝜕𝑦2
) =

𝜕2(𝑢2)

𝜕𝑥2
+

𝜕2(𝑢2)

𝜕𝑦2
+ 𝑢,

𝑢(𝑥, 𝑦, 0) = √sin𝑥sinh𝑦.
 

 

Now carry out the recursive process (16) and by 

simplification we obtain 

 

 

𝑢1(𝑥, 𝑦, 𝑡) = √sin𝑥sinh𝑦 +
1

Γ
∫

𝑡

0
(𝑡 − 𝜉)𝛼−1 (

𝜕2(𝑢0
2)

𝜕𝑥2
+

𝜕2(𝑢0
2)

𝜕𝑦2
+ 𝑢0)

𝑢1(𝑥, 𝑦, 𝑡) = √sin𝑥sinh𝑦 (1 +
𝑡𝛼

Γ(𝛼+1)
)

𝑢2(𝑥, 𝑦, 𝑡) = √sin𝑥sinh𝑦 (1 +
𝑡𝛼

Γ(𝛼+1)
+

𝑡2𝛼

Γ(2𝛼+1)
)

⋮

𝑢𝑛(𝑥, 𝑦, 𝑡) = √sin𝑥sinh𝑦 (1 +
𝑡𝛼

Γ(𝛼+1)
+

𝑡2𝛼

Γ(2𝛼+1)
+ ⋯ +

𝑡𝑛𝛼

Γ(𝑛𝛼+1)
)

𝑢(𝑥, 𝑦, 𝑡) = lim
𝑛→∞

𝑢𝑛(𝑥, 𝑦, 𝑡) = √sin𝑥sinh𝑦 ∑∞
𝑚=0

𝑡𝑚𝛼

Γ(𝑚𝛼+1)

= √sin𝑥sinh𝑦𝐸𝛼(𝑡𝛼)

 

  

if we put 𝛼 = 1 , we the exact solution  

 

 𝑢(𝑥, 𝑦, 𝑡) = √sin𝑥sinh𝑦𝑒𝑡 , …(18) 

  

IV. CONCLUSION 
 

Three examples of population equations used in 

option pricing are provided in this article. The (RVIM) is 

successfully used in these cases. In the recursive process, 

the Mittag-Leffler function always arises, and the closed 

form of solutions is obtained. The findings shown in 

[11], [31], and [32] are consistent with the depicted 

outcomes for two of the situations. at least as far as we 

are aware. However, as we could see, it may be 

effectively addressed utilizing (RVIM). As a result, the 

(RVIM) approach is effective for locating the solutions 

to fractional partial differential equations. Additionally, 

the series solution is often simple to discover. Only a 

handful of the series' keywords need to be found; the rest 

will be figured out on their own. 
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