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ABSTRACT 

 
In this article, we discuss the facts and wonders of complex integrations. We describe the differences between 

integrations and complex integrations. These differences show the wonders of complex integrations. 
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I. INTRODUCTION 
 

In general, we have no rules (techniques) to 

integrate the complex functions regardless of exceptions. 

As we know, there are many rules for the integration of 

real functions, even so, they are not applicable in the 

field of complex functions, and there aren’t any special 

rules. Therefore, we aim to use the techniques that 

describe the value of the given integral is equal or less 

than of some quantity, but sometimes it is not easy to use 

the techniques or change the form of the questions for 

conformity to the relevant criteria because it is essential 

to know many other conditions and criteria. This article 

examines the wonders of mixed integrals, which are 

effective in integrating, and the tricks we use instead of 

integrating methods. 

 

II. BACKGROUND 
          

Integrating on a path: Integration of complex-

valued functions of a complex variable are defined on 

curves in the complex plane, rather than on just intervals 

of the real line. Classes of curves that are adequate for 

the study of such integrals are introduced in this article. 

Let 𝑥(𝑡) and 𝑦(𝑡) be continuous real-valued 

functions of a real variable t in [𝑎, 𝑏], Assume that C is a 

smooth curve with equation  (𝐶): 𝑧(𝑡) = 𝑥(𝑡) + 𝑖𝑦(𝑡) ,
𝑡 ∈ [𝑎, 𝑏] 

 
          

If f(z) be a continuous function on C, in the 

integral [a, b], then the desired integral can be set to 

points 𝑎 = 𝑡0, 𝑡1, … , 𝑡𝑛 = 𝑏 where 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑛, 

and this causes the C curve to be presented to 

𝑧0, 𝑧1, … , 𝑧𝑛 where 𝑧𝑖 = z(𝑡𝑖). Suppose ∆𝑧𝑖 = 𝑧𝑖 − 𝑧𝑖−1 

and 𝜉𝑖 be the desired point between 𝑧𝑖 and 𝑧𝑖−1, then the 

sum will be: 

 

𝑠𝑛 = ∑ 𝑓(𝜉𝑖)∆𝑧𝑘

𝑛

𝑘=1

 

 
Let the number of subdivisions n increase in 

such a way that the largest of the chord lengths |∆𝑧𝑘| 
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approaches zero. Then, since 𝑓(𝑧) is continuous the sum 

𝑠𝑛 approaches a limit which does not depend on the 

mode of subdivision and we display this limit like:  

 

∫ 𝑓(𝑧)𝑑𝑧    or    

𝑏

𝑎

∫ 𝑓(𝑧)𝑑𝑧     

 

𝑐

 

 

Which called the complex line integral or 

simply line integral of 𝑓(𝑧) along the directional curve 

C, or the definite integral of 𝑓(𝑧) from a to b along 

curve C. in such case, 𝑓(𝑧) is said to be integrable along 

C. if  𝑓(𝑧) 𝑖𝑠 𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐 𝑎𝑡 𝑎𝑙𝑙 𝑝𝑜𝑖𝑛𝑡𝑠 𝑜𝑓 𝑎 𝑟𝑒𝑔𝑖𝑜𝑛  ℜ 

and if C is a curve lying in ℜ, then 𝑓(𝑧) is continuous 

and therefore integrable along with C. [11] 

 

III. LAURENT SERIES 
 

Suppose that the function f(z) across the arc 

area 𝑅1 < |𝑧 − 𝑧0| < 𝑅2,with the analytical center 𝑧0, 

and C represents the simple and closed path (Jordan 

curve) in a positive direction around 𝑧0, located in this 

area (as shown in Figure In this case, at any point z of 

that area, f (z) has a series representation. [10 

 

𝑓(𝑧) = ∑ 𝑎𝑛(𝑧 − 𝑧0)𝑛 

∞

𝑛=0

+ ∑
𝑏𝑛

(𝑧 − 𝑧0)𝑛
 (𝑅 < |𝑧 − 𝑧0| < 𝑅2) 

 

∞

𝑛=0

 

 

Where: 

 

𝑎𝑛 =
1

2𝜋𝑖
∫

𝑓(𝑧)𝑑𝑧

(𝑧 − 𝑧0)𝑛+1
   (𝑛 = 0,1,2, … )   ,

 

𝑐

𝑏𝑛

=
1

2𝜋𝑖
∫

𝑓(𝑧)𝑑𝑧

(𝑧 − 𝑧0)−𝑛+1
   (𝑛

 

𝑐

= 1,2, … )     

 

Topic Analysis: It is important to understand the 

techniques of integrations of real-valued functions 

although they are not applicable for complex 

integrations. The issue that makes complex integration 

more complicated is that we don’t know what we get by 

integrating from a curve or integrating from a shape. The 

length of a curve, area of a plane, and volumes can be 

obtained by definite real integrations and indefinite 

integration is studied as the inverse of derivatives, which 

allow us to guess the value of integral, but the complex 

integration is neither inverse of derivative nor 

calculation of the length of curve, area or volume. 

Let start by describing the following theorem    

 

Theorem:  if G be a region contained a smooth curve C 

and  𝑓(𝑧) be a continuous function on G, then 𝑓(𝑧) is 

integrable on whole C. [9] 

 

Theorem: if w(t) is a piecewise continuous complex-

valued function defined on an interval 𝑎 ≤ 𝜃 ≤ 𝑏,  [10] 

then  

 

|∫ 𝑤(𝑡)𝑑𝑡

𝑏

𝑎

| ≤ ∫ |𝑤(𝑡)|
𝑏

𝑎

𝑑𝑡       (𝑎 ≤ 𝑏)  

 

As an example, let C be right half of a circle  |𝑧| = 2  

from 𝑧 = −2𝑖 to 𝑧 = 2𝑖. Calculate the value of integral 

𝐼 = ∫ 𝑧̅𝑑𝑧
 

𝑐
 ,   𝑧 = 2𝑒𝑖𝜃  (−

𝜋

2
≤ 𝜃 ≤

𝜋

2
) .   

So 

 

𝐼 = ∫ 2𝑒𝑖𝜃̅̅ ̅̅ ̅̅

𝜋
2

−
𝜋
2

(2𝑒𝑖𝜃)′𝑑𝜃

= ∫ 2𝑒−𝑖𝜃2𝑖𝑒𝑖𝜃𝑑𝜃 = 4𝑖 ∫ 𝑑𝜃

𝜋
2

−
𝜋
2

𝜋
2

−
𝜋
2

= 4𝜋𝑖 
 

Here, the impressive points are, the calculation 

of integral is definite, integration is on a circle, and 

integration is on the circle bounded from  𝑧 = −2𝑖 to 

𝑧 = 2𝑖. otherwise, there is no physical or geometrical 

analysis. [12] 

The interesting point at the figure below is that 

we get different results of moving from O to B, but 

according to vector analysis, the direction 𝑐1 and 𝑐2 must 

be the same. Therefore, the path is important in complex 

integrations. 

First, calculate the integral on 𝑐1 which is the 

curve OAB 
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∫ 𝑓(𝑧)𝑑𝑧 = ∫ 𝑓(𝑧)𝑑𝑧
 

0𝐴

 

𝑐1

+ ∫ 𝑓(𝑧)𝑑𝑧
 

𝐴𝐵

  ,            ∫ 𝑓(𝑧)𝑑𝑧

 

𝑐2

= ∫ 𝑓(𝑧)𝑑𝑧
 

0𝐵

              

 

The physical and geometrical analysis of the 

differential and integral calculus is that these two paths 

must have the same result, but in practice, it seems that 

these two integrals are not the same. It means 

∫ 𝑓(𝑧)𝑑𝑧 ≠
 

𝑐1
∫ 𝑓(𝑧)𝑑𝑧  

 

𝑐2
and the function is: [10]        

                              

𝑓(𝑧) = 𝑦 − 𝑥 − 𝑖3𝑥2   (𝑧 = 𝑥 + 𝑖𝑦). 

 

∫ 𝑓(𝑧)𝑑𝑧 =  ∫ 𝑦𝑖𝑑𝑦

1

0

= 𝑖 ∫ 𝑦𝑑𝑦

1

0

= 𝑖
1

2
  

 

𝑂𝐴

 

 

∫ 𝑓(𝑧)𝑑𝑧 = ∫ (1 − 𝑥 − 𝑖3𝑥2)
1

0

1𝑑𝑥 

 

𝐴𝐵

= ∫ (1 − 𝑥)
1

0

𝑑𝑥 − 3𝑖 ∫ 𝑥2𝑑𝑥
1

0

=
1

2
− 𝑖 

 

∫ 𝑓(𝑧)𝑑𝑧
 

𝑐2

= ∫ −𝑖3𝑥2(1 + 𝑖)𝑑𝑥
1

0

= 3(1 − 𝑖) ∫ 𝑥2𝑑𝑥
1

0

= 1 − 𝑖 

 

Even though started points and ended points of 

both directions are the same. The value of integral of 

𝑓(𝑧) in one direction is different with the other. 

Therefore the value of integral 𝑓(𝑧) on direction OABO 

or 𝑐1 − 𝑐2 is not equal to zero: 

 

∫ 𝑓(𝑧)𝑑𝑧 − ∫ 𝑓(𝑧)𝑑𝑧
 

𝑐2

=
−1 + 𝑖

2

 

𝑐1

 

 

Since we got different results, it may imply that 

the calculation purpose is obtaining the length of the 

curve, but we will see that the calculation of integral is 

dependent on the initial point and terminal point not to 

the direction of the path. As 𝑐1 and 𝑐2 have the same 

initial point and terminal point, and the result of integral 

are different it shows that integration is related to the 

path.   But see the problem below. Here, we consider that 

C is an arbitrary smooth curve such as 𝑧 = 𝑧(𝑡), (𝑎 ≤

𝑡 ≤ 𝑏)  at initial point 𝑧(𝑎) = 𝑧1 to terminal point 

𝑧(𝑏) = 𝑧2 , to calculate the value of integral: 

 

𝐼 = ∫ 𝑓(𝑧)𝑑𝑧
 

𝑐2

= ∫ 𝑧(𝑡)𝑧′(𝑡)𝑑𝑡 =
[𝑧(𝑡)]2

2
 |

𝑏

𝑎

𝑏

𝑎

=
[𝑧(𝑏)]2 − [𝑧(𝑎)]2

2
=

𝑧2
2 − 𝑧1

2

2
 

 

It is obvious that the integration of real-valued 

functions is not independent of the form of the curve, but 

in complex integrations, especially the above relation, it 

depends on the initial point and terminal point and 

independent from the form of the curve. In the previous 

example, we observed that the result of integration 

depended on the form of the curve and impendent of 

initial and terminal points. Although the initial and 

terminal points were the same, the values of the 

integration of various paths were different. [5] 

To generalize the issue for uneven curves, we 

can divide the curve C to the limit number of smooth 

curves 𝑐𝑘(𝑘 = 1,2, … , 𝑛) which ended point of one is the 

started point of the other. In other words, we assume that 

the curve 𝑐𝑘 is continued from 𝑧𝑘 to 𝑧𝑘+1. We can write 

  

∫ 𝑧𝑑𝑧 = ∑ ∫ 𝑧𝑑𝑧
 

𝑐𝑘

𝑛

𝑘=1

= ∑
𝑧𝑘+1

2 − 𝑧𝑘
2

2

 

 

 

𝑐

=
𝑧𝑛+1

2 − 𝑧1
2

2
                  

 

As a result, if C is a piecewise smooth curve 

such that connects two points 𝑧0 and z, then we have 

  

∫ 𝑧𝑛𝑑𝑧 =
1

𝑛 + 1

 

𝑐

(𝑧𝑛+1 − 𝑧0
𝑛+1)                

 

Therefore, if C is a closed curve, the value of 

integration is zero because here we have 𝑧𝑛+1 = 𝑧0
𝑛+1.  

In the case of integration, if we are dealing with a curve 

that is not closed but smooth, then it is possible to 

integrate it simply, but for the uneven curve, we have to 

partition the curve to the smooth curves 𝑐𝑘(𝑘 =
1,2, … , 𝑛) and integrate from each curve and the 

summation of values is same as the value of integral C. 

As a result, the integration of  𝑓(𝑧) = 𝑧 is on the closed 

curve is zero (compare to one of the previous examples 

that the integration on the closed curve was not zero) [2] 

 

Theorem: let 𝑓(𝑧) be a continuous function on smooth 

curve C which is contained on region G, then 𝑓(𝑧) is 

integrable on the length C. 

 

Theorem: Suppose 𝑓(𝑧) is integrable along a curve C 

habing finite length L and suppose there exists a positive 

number M such that |𝑓(𝑧)| ≤ 𝑀 on C then  

|∫ 𝑓(𝑧)𝑑𝑧
 

𝑐
| ≤ 𝑀𝐿.  [12] 

The theorem does not say anything about the 

exact value of the integral, but it helps us to recognize 

the value of the integrals which are less than or equal to 

some real or complex values. if we compare this method 
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with methods on the integration of real-valued functions, 

this would not be an appropriate method but in complex 

integration, this is valuable because here we have no 

formula to calculate the integral of a complex function. 

The method is useful not only for calculation of the 

approximate value of the integral of some function but 

also is useful to prove many theorems of complex 

integration. The theorem paves the way to prove the 

related theorem and to realize the related problems.  

 

Theorem: Let 𝑓(𝑧) be a continuous function on 

piecewise smooth curve C which is contained on region 

G, then for every 𝜀 > 0 there is a polygon in C which is 

surrounded by L such that 

 

|∫ 𝑓(𝑧)𝑑𝑧 − ∫ 𝑓(𝑧)𝑑𝑧
 

𝐿

 

𝑐

| < 𝜀   

 

 
 

We cannot integrate 𝑓(𝑧) on curve C, we will 

be able to cover the curve C by another curve like L such 

as the curve C must be located on the same region and 

also 𝑓(𝑧) be continuous on the piecewise smooth curve 

L, by doing this we are assured that the integral of the 

function 𝑓(𝑧) is the same as integral on C. [3] 

 

Theorem: let the function 𝑓(𝑧) be continuous on the 

connected and simple region G which contained the 

polygon L then [4] 

 

∫ 𝑓(𝑧)𝑑𝑧
 

𝐿

= ∫ 𝑓(𝑧)𝑑𝑧
 

∆1

+ ∫ 𝑓(𝑧)𝑑𝑧
 

∆2

+ ⋯ + ∫ 𝑓(𝑧)𝑑𝑧
 

∆𝑛

 

 

Here, the curves  ∆1, ∆2, … , , ∆𝑛 are the borders 

of triangles which are located on the region G 

 

 

Closed polygonal shapes are interchangeable to 

triangles. We divide them into triangles and apply 

integration on every triangle and collect the values of 

integral then the result would be the same as to the 

integral of a function on a region closed polygonal 

shapes. When we divide the shape into triangles and 

integrate from every side of the triangle. We may think 

that two times integration from the same sides of 

triangles will arose the value of integral much bigger, 

but fortunately, our assumption is not true. It is 

interesting to know that the integral value of those sides 

which are common between to triangles will be 

eliminated because it would be integrated twice with the 

opposite directions and integral of the same side with 

opposite direction eliminate each other. In this manner 

we will get the actual value of the integral on curve C. 

here the partition of the shape in triangles let us calculate 

the integral without leaving a footprint, this trick is as 

good as the catalyst in chemistry (a substance that 

increases the rate of a chemical reaction without itself 

undergoing any permanent chemical change). 

When we limit the region inside of another 

connected simple closed region G such that the function 

𝑓(𝑧) which is continuous on closed curve L, we apply 

the same method in definite integral in real-valued 

functions although these two are not comparable because 

if we divide any area in some shapes then integrate every 

shape and collect the values, In fact, we collect the areas, 

but here if we ask, do we get the area in this method in 

complex integration? Unfortunately, we have no answer 

to this question.  

 

Theorem: If a function 𝑓(𝑧) is analytic at all points 

interior to and a simple closed contour C, then [11] 

 

∫ 𝑓(𝑧)𝑑𝑧
 

𝐶

= 0 

 

 
 

The theorem is proved by using triangles such 

that the region G supposed to be a triangle and the 

triangle divided into three triangles and continued like 

that up to n, now we can conclude that in a region which 

has Regular geometric shape we can apply this method 

and calculate the value of integral. Cauchy integral’s 
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formula led us to any closed curve which satisfies the 

conditions of the theorem instead of searching any other 

methods. we can apply the theorem and in this case, the 

value of the integral is always zero. 

The generalization of the Cauchy integral 

formula shows that if the function 𝑓(𝑧) is analytic in a 

region I and just continuous in    𝐼 , the value of integral 

will be again zero [7] 

 

∫ 𝑓(𝑧)𝑑𝑧
 

𝐶

= 0 

 

This is known as the generalization of Cauchy integral 

formula.  

 

Theorem: The advantage of this theorem is that we will 

be able to consider the region as an Irregular shape and 

all the curves that are located inside of the region D can 

also be an Irregular shape, the only limitation is  that  the 

curves must not intersect and overlap each, and 𝐶0  

contain all the curves  𝐶1, 𝐶2 … , 𝐶𝑛   where 𝐶0 and 

𝐶1, 𝐶2 … , 𝐶𝑛 are Jordan and piecewise smooth  curves 

and also the set of the curve which are inside of the 𝐶0 

makes a  (𝑛 + 1) connected domain   such that the border 

of the region is supposed to be the borders of n+1 Jordan 

curves. Assume that the functions 𝑓(𝑧) is analytic on �̅�, 

by theorem we can take the irregular shapes D and 

divide it to the sub regions 𝐶1, 𝐶2 … , 𝐶𝑛 and calculate the 

integral, this method can help us to calculate the integral 

of irregular shapes. [6] 

 

∫ 𝑓(𝑧)𝑑𝑧
 

𝐶0

= ∫ 𝑓(𝑧)𝑑𝑧
 

𝐶1

+ ∫ 𝑓(𝑧)𝑑𝑧
 

𝐶2

+ ⋯ + ∫ 𝑓(𝑧)𝑑𝑧
 

𝐶𝑛

 

 

Cauchy’s Integral Formula: If we present the form of 

the related functions as ∫
𝑓(𝑧)

𝑧−𝑧0
𝑑𝑧  

 

𝑐
 we have come up 

with the best possible answer, which means that we can 

claim that the value of integral is2𝜋𝑖, it means 

∫
𝑓(𝑧)

𝑧−𝑧0
𝑑𝑧  

 

𝑐
= 2𝜋𝑖 . we assume that the function 𝑓(𝑧) is 

analytic on region G which contains the Jordan, closed 

and piecewise smooth curve C and z0   is also included. 

[10] 

Alongside this, it relates the values of 𝑓(𝑧) 

inside C to the values of f (z) on the C curve. Note that, 

if 𝑧0is outside C, then  
𝑓(𝑧)

𝑧−𝑧0
    is analytical in and around c 

and therefore according to Cauchy’s integral theorem. 

we have 
1

 2𝜋𝑖
∫

𝑓(𝑧)

𝑧−𝑧0
𝑑𝑧 = 0

 

𝑐
. 

Now, another interesting point is that if we 

assume (Mora's theorem) that the function 𝑓(𝑧)  in the G 

region is continuous and the curve C of the Jordan curve 

is a smooth part, and also the function 𝑓(𝑧), in all sub-

regions, the closed part is a smooth. C located in G has 

properties ∫ 𝑓(𝑧)𝑑𝑧 = 0
 

𝐶𝑖
 In this case, the function 𝑓(𝑧)  

in G is analytical. [10] 

 

The Derivative Of Analytic Functions:  We can make a 

conclusion from Cauchy’s integral formula that if a 

function is analytic at a point then the derivatives of any 

degree exist and analytic at that point. Luckily the 

derivatives of analytic functions are another helpful way 

for calculation of complex integrals and in this method, 

we may often use the series like Laurent series so the 

first and second derivative of analytic functions are [11] 

 

∫
𝑓(𝑠)

(𝑠 − 𝑧)2
𝑑𝑠 = 𝑓′(z)2𝜋𝑖 

 

𝑐

       ,      ∫
𝑓(𝑠)

(𝑠 − 𝑧)3
𝑑𝑠

 

𝑐

=  𝑓′′(𝑧)𝜋𝑖            
  

Therefore, in general, we write 

  

∫
𝑓(𝑠)

(𝑠 − 𝑧)3
𝑑𝑠 =  2𝜋𝑖𝑓(𝑛)(𝑧)

1

𝑛!
          

 

𝑐

 

 

Where z is included, the curve C and S show 

the point, which is on the boundary, points of C.  

 

Residues: The residue is the most powerful method for 

complex integration in this case, we need to know the 

Laurent series and based on this series we have to extend 

the functions as series and find 𝑏1 and after that, we can 

easily calculate the required complex integral, as we 

know in Laurent series we have 𝑎𝑛 and 𝑏𝑛 which are the 

coefficient of the Laurent series, there is no need to 

introduce and calculate 𝑎𝑛 only the formula of 𝑏𝑛 is 

enough which is [10] 

 

𝑏𝑛 =
1

2𝜋𝑖
∫

𝑓(𝑧)𝑑𝑧

(𝑧 − 𝑧0)−𝑛+1
      (𝑛 = 1,2, … )

 

𝑐

 

 

Where n=1 we have 𝑏1 =
1

2𝜋𝑖
∫ 𝑓(𝑧)𝑑𝑧 

 

𝑐
which is 

the best way to calculate∫ 𝑓(𝑧)𝑑𝑧 
 

𝑐
. 

The complex number 𝑏1 is the coefficient of 
1

𝑧−𝑧0
 in Laurent series and called the residue of the 

function 𝑓(𝑧)  at a singular 𝑧0 and write as 𝑅𝑒𝑠 𝑓(𝑧). 

Without any exceptional conditions that we 

have faced in very simple functions, we have no other 

way around to calculate the complex integral therefore 

the method of residue is very useful for complex 

integrations. 

If we realize the method of residue we would 

see the attraction, the procedure of calculating ∫ 𝑓(𝑧)𝑑𝑧 
 

𝑐
 

is an interesting technique. we use derivative, Laurent 

series, and sometimes Tylor series to calculate the 

integrals. Although the way is long and tough, we have 

to apply it because we have no other way around. [11] 

For instance, we consider a circle C with 

|𝑧 − 2| = 1 and calculate the value of ∫
𝑑𝑧

𝑧(𝑧−2)4

 
 

As we know here 0 and 2 are the isolated 

singular points of the function  𝑓(𝑧) =
1

𝑧(𝑧−2)4  the 
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functions have Laurent series at the neighborhood 0 <
|𝑧 − 2| < 2 , so we can write 

 

1

1 − 𝑧
= ∑ 𝑧𝑛        (|𝑧| < 1)

∞

𝑛=0

 

⇒
1

𝑧(𝑧 − 2)4
=

1

(𝑧 − 2)4
 ∙

1

𝑧
=

1

(𝑧 − 2)4
 ∙

1

2 + (𝑧 − 2)
 

=
1

(𝑧 − 2)4
 ∙

1

2 (1 +
(𝑧 − 2)

2
)

=
1

2(𝑧 − 2)4
 ∙

1

1 − (−
(𝑧 − 2)

2
)
 

=
1

2(𝑧 − 2)4
 ∙ ∑  [

−(𝑧 − 2)

2
]

𝑛∞

𝑛=0

=
1

2(𝑧 − 2)4
 ∙ ∑(−1)𝑛 [ 

(𝑧 − 2)

2
]

𝑛∞

𝑛=0

 

=   ∑(−1)𝑛
(𝑧 − 2)𝑛−4

2𝑛+1

∞

𝑛=0

 

 

Here for n=3, we have 

 

∑(−1)𝑛
(𝑧 − 2)𝑛−4

2𝑛+1

∞

𝑛=0

= (−1)3
(𝑧 − 2)−1

24

= −
1

16(𝑧 − 2)
 

 

Therefore 𝑏1 = −
1

16
 and by using the method of 

residue we have 

  

∫
𝑑𝑧

𝑧(𝑧 − 2)4
= 2𝜋𝑖𝑏1 = 2𝜋𝑖 (

−1

16
) =

−𝜋𝑖

8

 

 

 

IV. CONCLUSION 
 

By surveying and comparing the integral of 

real-valued functions and integral of complex-valued 

functions and also usage of derivatives theorems in 

integration we can state the results as below: 

1. In general, the methods and techniques, which are 

used in the integration of real-valued functions are not 

applicable in complex integrations. 

2. Complex integrations depend on techniques and 

theorem that help one to calculate the integral, and there 

is no special technique, which is directly applicable. 

3. The derivatives of complex functions are not useful 

for integration as much as the derivatives of real-valued 

functions are. 

4. Without some exceptional conditions, we have no 

physical or geometrical explanation to describe complex 

integrations. 

5. The first and foremost method of complex 

integrations is residue, and mathematicians need to work 

hard on residue and expand it. 
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